scholarly journals Modeling of Corrosion Rate and Resistivity of Steel Reinforcement of Calcium Aluminate Cement Mortar

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Cristina Argiz ◽  
Miguel Ángel Sanjuán ◽  
Pedro Castro Borges ◽  
Emiliano Álvarez

Calcium aluminate cement (CAC) is a binder whose hydrated compounds change over time from cubic phases to hexagonal phases, producing an increase of porosity in reinforced concretes. Thereby, chloride ions, among other steel corrosion promoters, can enter the concrete more easily leading to an increase of the reinforcement corrosion process. When such a transformation of phases is completed, a characteristic value regarding both corrosion intensity (Icorr) and resistivity (related to the ohmic drop of the cementitious material) is reached, which depends mainly on the mix proportions of the material and the curing procedure. This paper presents the characteristic corrosion intensity values of steel embedded in mortars made of CAC after five years of exposure to either a 0.5 mol/l or 1.5 mol/l NaCl solution in order to be applied to estimate the service life of reinforced concrete made of calcium aluminate cement (CAC) which is used in real construction structures. Ohmic drop measurements are also presented to support the values obtained. The aim of this paper is to model the corrosion rate and resistivity of the steel reinforcement of calcium aluminate cement mortar with regard to environmental factors (temperature and chloride content) and mortar quality (water/cement ratio).

2021 ◽  
Author(s):  
Ki Yong Ann ◽  
Hee Jun Yang ◽  
Hansol Kim ◽  
Jiseok Kim ◽  
Won Jung Cho ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3855
Author(s):  
Amirmohamad Abolhasani ◽  
Bijan Samali ◽  
Fatemeh Aslani

One commonly used cement type for thermal applications is CAC containing 38–40% alumina, although the postheated behavior of this cement subjected to elevated temperature has not been studied yet. Here, through extensive experimentation, the postheated mineralogical and physicochemical features of calcium aluminate cement concrete (CACC) were examined via DTA/TGA, X-ray diffraction (XRD), and scanning electron microscopy (SEM) imaging and the variation in the concrete physical features and the compressive strength deterioration with temperature rise were examined through ultrasonic pulse velocity (UPV) values. In addition, other mechanical features that were addressed were the residual tensile strength and elastic modulus. According to the XRD test results, with the temperature rise, the dehydration of the C3AH6 structure occurred, which, in turn, led to the crystallization of the monocalcium dialuminate (CA2) and alumina (Al2O3) structures. The SEM images indicated specific variations in morphology that corresponded to concrete deterioration due to heat.


Sign in / Sign up

Export Citation Format

Share Document