scholarly journals Highway Design and Safety Consequences: A Case Study of Interstate Highway Vertical Grades

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Zongxin Tang ◽  
Sikai Chen ◽  
Jianchuan Cheng ◽  
Seyed Ali Ghahari ◽  
Samuel Labi

Vertical alignment, which includes vertical grades and lengths, is a critical aspect of highway design policy that influences safety. A full understanding of the effect of vertical grade and segment length on highway safety can help agencies to evaluate or adjust their design policies regarding vertical alignment design features (grade and length). For this reason, it is useful to assess the current relationships between design policy and safety performance. To address this task, this paper uses data from interstate segments to first establish the relationship between these design features and safety. Safety is expressed in terms of the three different levels of crash severity (fatal, injury, and property damage only). In its analysis, the paper departs from the traditional univariate models (where each crash severity is modeled separately) and instead uses a seemingly unrelated negative binomial (SUNB) technique, a multivariate model that duly accounts for the unobserved shared effects between the different levels of crash severity. In addition, the paper’s models duly recognize and account for the holistic nature of the grade and tangent length effects: the effect of the sum (interaction) of the vertical grade and length is different from the sum of their individual effects. The paper investigates the relationships for rural and urban interstate highway segments. Against the background of the developed models, the paper evaluates current design policies (specifications on vertical alignment grade and length) for similar classes of highways at a number of countries and presents a set of nomograms that feature lines representing points of equal safety performance. These charts can be used by the highway agencies to evaluate and compare their current or possible future highway design policies.

2021 ◽  
Author(s):  
S.M. Morjina Ara Begum

A set of Safety Performance Function (SPFs) commonly known as accident prediction models, were developed for evaluating the safety of Highway segments under the jurisdiction of Ministry of Transportation, Ontario (MTO). A generalized linear modeling approach was used in which negative binomial regression models were delevoped separately for total accidents and for three severity types (Property Damage Only accidents, Fatal and Injury accidents) as a function of traffic volume AADT. The SPFs were calibrated from 100m homogenous segments as well as for variable length continuous segments that are homogeneous with respect to measured traffic and geometric characteristics. For the models calibrated for Rural 2-Lane Kings Highways, the variables that had significant effects on accident occurrence were the terrain, shoulder width and segment lenght. It was observed that the disperson parameter of the negative binomial districution is large for 100m segments and smaller for longer segments. Further investigation of the dispersion parameter for Rural 2-Lane Kings Highways showed that the models calibrated with a separate dispersion parameter for each site depending on the segment length performed better that the model calibrated considering fixed dispersion parameter for all sites. For Rural 2-Lane Kings Highways, a model was calibrated with trend considering each year as a separate observation. The GEE (Generalized Estimating Equation) procedure was use to develop these models since it incorporated the temporal correlation that exists in repeated measurements. Results showed that integration of time trend and temporal correlation in the model improves the model fit.


2021 ◽  
Author(s):  
S.M. Morjina Ara Begum

A set of Safety Performance Function (SPFs) commonly known as accident prediction models, were developed for evaluating the safety of Highway segments under the jurisdiction of Ministry of Transportation, Ontario (MTO). A generalized linear modeling approach was used in which negative binomial regression models were delevoped separately for total accidents and for three severity types (Property Damage Only accidents, Fatal and Injury accidents) as a function of traffic volume AADT. The SPFs were calibrated from 100m homogenous segments as well as for variable length continuous segments that are homogeneous with respect to measured traffic and geometric characteristics. For the models calibrated for Rural 2-Lane Kings Highways, the variables that had significant effects on accident occurrence were the terrain, shoulder width and segment lenght. It was observed that the disperson parameter of the negative binomial districution is large for 100m segments and smaller for longer segments. Further investigation of the dispersion parameter for Rural 2-Lane Kings Highways showed that the models calibrated with a separate dispersion parameter for each site depending on the segment length performed better that the model calibrated considering fixed dispersion parameter for all sites. For Rural 2-Lane Kings Highways, a model was calibrated with trend considering each year as a separate observation. The GEE (Generalized Estimating Equation) procedure was use to develop these models since it incorporated the temporal correlation that exists in repeated measurements. Results showed that integration of time trend and temporal correlation in the model improves the model fit.


Author(s):  
Ghalia Gamaleldin ◽  
Haitham Al-Deek ◽  
Adrian Sandt ◽  
John McCombs ◽  
Alan El-Urfali

Safety performance functions (SPFs) are essential tools to help agencies predict crashes and understand influential factors. Florida Department of Transportation (FDOT) has implemented a context classification system which classifies intersections into eight context categories rather than the three classifications used in the Highway Safety Manual (HSM). Using this system, regional SPFs could be developed for 32 intersection types (unsignalized and signalized 3-leg and 4-leg for each category) rather than the 10 HSM intersection types. In this paper, eight individual intersection group SPFs were developed for the C3R-Suburban Residential and C4-Urban General categories and compared with full SPFs for these categories. These comparisons illustrate the unique and regional insights that agencies can gain by developing these individual SPFs. Poisson, negative binomial, zero-inflated, and boosted regression tree models were developed for each studied group as appropriate, with the best model selected for each group based on model interpretability and five performance measures. Additionally, a linear regression model was built to predict minor roadway traffic volumes for intersections which were missing these volumes. The full C3R and C4 SPFs contained four and six significant variables, respectively, while the individual intersection group SPFs in these categories contained six and nine variables. Factors such as major median, intersection angle, and FDOT District 7 regional variable were absent from the full SPFs. By developing individual intersection group SPFs with regional factors, agencies can better understand the factors and regional differences which affect crashes in their jurisdictions and identify effective treatments.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Paolo Intini ◽  
Nicola Berloco ◽  
Gabriele Cavalluzzi ◽  
Dominique Lord ◽  
Vittorio Ranieri ◽  
...  

Abstract Background Urban safety performance functions are used to predict crash frequencies, mostly based on Negative Binomial (NB) count models. They could be differentiated for considering homogeneous subsets of segments/intersections and different predictors. Materials and methods The main research questions concerned: a) finding the best possible subsets for segments and intersections for safety modelling, by discussing the related problems and inquiring into the variability of predictors within the subsets; b) comparing the modelling results with the existing literature to highlight common trends and/or main differences; c) assessing the importance of additional crash predictors, besides traditional variables. In the context of a National research project, traffic volumes, geometric, control and additional variables were collected for road segments and intersections in the City of Bari, Italy, with 1500 fatal+injury related crashes (2012–2016). Six NB models were developed for: one/two-way homogeneous segments, three/four-legged, signalized/unsignalized intersections. Results Crash predictors greatly vary within the different subsets considered. The effect of vertical signs on minor roads/driveways, critical sight distance, cycle crossings, pavement/markings maintenance was specifically discussed. Some common trends but also differences in both types and effect of crash predictors were found by comparing results with literature. Conclusion The disaggregation of urban crash prediction models by considering different subsets of segments and intersections helps in revealing the specific influence of some predictors. Local characteristics may influence the relationships between well-established crash predictors and crash frequencies. A significant part of the urban crash frequency variability remains unexplained, thus encouraging research on this topic.


2012 ◽  
Vol 49 (3) ◽  
pp. 459-472 ◽  
Author(s):  
María Inclán

This study represents the first systematic analysis of the interactions between pro-Zapatista and counter-Zapatista protestors in Chiapas, Mexico, and the first empirical test of movement–countermovement theories in a transitional democracy. Three claims are tested: (1) movement protests trigger countermovement protest activity; (2) different political parties at different levels of government trigger movement–countermovement protest activity; and (3) victories won by one side of a conflict, viewed as procedural concessions, trigger further pro- and countermovement protest activity. These hypotheses are tested using negative binomial models and data on Zapatista-related protest activity between 1994 and 2003. The results show that: (1) movement and countermovement protests have a positive, reciprocal effect on both groups' future protest activity; (2) movement and countermovement protesting groups use the dominant political party as a target of protest. The characteristics of the electoral cycle and rise of multi-party competition at all levels of government do not have a consistent effect on protest activity; (3) granting procedural concessions to pro-movement actors generates more protest activity among both groups. However, granting procedural concessions via social programs and public works to the population irrespective of its sympathy to either side of the movement–countermovement conflict decreases movement protests and increases countermovement protests.


Author(s):  
Steven Y. Stapleton ◽  
Anthony J. Ingle ◽  
Meghna Chakraborty ◽  
Timothy J. Gates ◽  
Peter T. Savolainen

Safety performance functions (SPFs) were developed for rural two-lane county roadway segments in Michigan. Five years of crash data (2011 to 2015) were analyzed for greater than 6,500 mi of rural county roadways, covering 29 of Michigan’s 83 counties and representing all regions of the state. Three separate models were developed to estimate annual deer-excluded total and injury crashes on rural county roadways: 1) paved federal-aid segments, 2) paved non-federal-aid segments, and 3) paved and gravel non-federal-aid segments with fewer than 400 vpd. To account for the unobserved heterogeneity associated with differing county design standards, mixed effects negative binomial models with a county-specific random effect were utilized. Not surprisingly, the county segment SPFs generally differed from traditional models generated using data from state-maintained roadways. County federal-aid roadways general showed greater crash occurrence than county non-federal-aid roadways, the Highway Safety Manual (HSM) two-lane rural roadways model, and rural state highways in Michigan. County non-federal-aid paved roadways showed crash occurrence rates that were remarkably similar to the HSM base rural two-lane roadway model, whereas gravel roadways showed greater crash occurrence rates. The presence of horizontal curves with design speeds below 55 mph had a strong association with the occurrence of total and injury crashes across all county road classes. Increasing driveway density was also found to be associated with increased crash occurrence. However, lane width, roadway surface width, and paved shoulder width had little to no impact on total or injury crashes.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Aschalew Kassu ◽  
Michael Anderson

This study examines the effects of wet pavement surface conditions on the likelihood of occurrences of nonsevere crashes in two- and four-lane urban and rural highways in Alabama. Initially, sixteen major highways traversing across the geographic locations of the state were identified. Among these highways, the homogenous routes with equal mean values, variances, and similar distributions of the crash data were identified and combined to form crash datasets occurring on dry and wet pavements separately. The analysis began with thirteen explanatory variables covering engineering, environmental, and traffic conditions. The principal terms were statistically identified and used in a mathematical crash frequency models developed using Poisson and negative binomial regression models. The results show that the key factors influencing nonsevere crashes on wet pavement surfaces are mainly segment length, traffic volume, and posted speed limits.


Author(s):  
Akinfolarin Abatan ◽  
Peter T. Savolainen

Limited access facilities, such as freeways and expressways, are generally designed to the highest standards among public roads. Consequently, these facilities demonstrate crash, injury, and fatality rates that are significantly lower than other road facility types. However, these rates are generally elevated in the immediate vicinity of interchanges because of increases in traffic conflicts precipitated by weaving, merging, and diverging traffic. Given the extensive costs involved in interchange construction, it is important to discern the expected operational and safety impacts of various design alternatives. To this end, the objective of this study was to analyze safety performance within the functional areas of interchanges. The study involves the integration of traffic crash, volume, and roadway geometric data from 2010 to 2014 in the state of Iowa. Separate analyses were conducted for the freeway mainline and ramp connections. A series of safety performance functions (SPFs) were estimated for both the mainline and ramps. Random effects negative binomial models were estimated, which account for correlation in crash counts at the same location over time. The results show the frequency of crashes to vary based on traffic volume, interchange configuration, speed limit, and traffic control at the ramp terminal. The random effects models are shown to significantly outperform pooled models, which suggest there are several important location-specific factors that are not included in the analysis dataset. The SPFs from this study are also compared with several reference models from the extant research literature.


Author(s):  
Anthony Ingle ◽  
Timothy J. Gates

This study evaluates the intersection of rural roads where a curved roadway segment connects the major flow of through traffic from orthogonal directions. A system of up to three intersections in combination can be represented singly by the situation modeled in this paper as a curved corner intersection site. This paper evaluates the application of random intercept negative binomial (NB) regression modeling to produce safety performance functions, and compares the outcome with NB models using fixed regional effects. At curved corner intersections, installing a combined/merged intersection approach near the midpoint of the curve is a potential countermeasure that by comparison with three-leg configurations experienced 20% fewer intersection crashes. A larger radius of curvature along the curved segment at these types of intersections is also very favorable for safety performance. Each 100 ft increase in the radius of a three-leg or four-leg curved corner intersection is estimated to reduce total non-animal crash occurrence by 5% and 7%, respectively. This study can help safety engineers to prioritize the improvement of rural un-signalized intersections.


2008 ◽  
Vol 3 (3) ◽  
pp. 108-118 ◽  
Author(s):  
Marwa M Hassan

There is a growing recognition that highway construction and maintenance have major environmental impacts. Despite the lack of a clear protocol for designing and constructing an environmentally-friendly highway, the industry experimented with sustainable alternatives since the 1970s. With an ultimate goal to develop sustainable guidelines for highway construction practices, this paper presents a general framework for the design and construction of sustainable flexible pavement system. This framework follows a similar approach to the Leadership in Energy and Environmental Design (LEED®) methodology by employing a point system to award a rating that quantifies the sustainability of the structure. The proposed framework divides factors related to highway design and construction into six major categories: sustainable sites (eight points), energy efficiency (five points), site air quality (four points), materials (ten points), water efficiency (four points), and innovative and design process (three points). The developed rating framework, referred to as Sustainable Design of Flexible Pavements (SDFlex), may be used to award a certification for sustainable highway design and construction. Different levels of certification may be awarded depending on the total earned credits from the six categories (Platinum, Gold, Silver, and Certified). A maximum score of 34 may be achieved under the aforementioned categories. It is proposed that a highway construction that satisfies the prerequisites and achieves a passing score of 10 be awarded a certified rating. The developed framework takes into consideration available technologies and the nature of the highway industry.


Sign in / Sign up

Export Citation Format

Share Document