scholarly journals The Biology and Role of Interleukin-32 in Tuberculosis

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Wu Li ◽  
Wanyan Deng ◽  
Jianping Xie

Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality globally, with nearly 10.4 million new cases of incidence and over 1.7 million deaths annually. Drug-resistant M. tuberculosis strains, especially multidrug-resistant or extensively drug-resistant strains, have further intensified the problem associated with tuberculosis control. Host-directed therapy is a promising alternative for tuberculosis control. IL-32 is increasingly recognized as an important host molecule against tuberculosis. In this review, we highlight the proinflammatory properties of IL-32 and the mode of action of IL-32 in mycobacterial infections to inspire the development of novel immunity-based countermeasures and host-directed therapies against tuberculosis.

2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


2014 ◽  
Vol 58 (11) ◽  
pp. 7010-7014 ◽  
Author(s):  
Yasuhiro Horita ◽  
Shinji Maeda ◽  
Yuko Kazumi ◽  
Norio Doi

ABSTRACTWe evaluated the antituberculosis (anti-TB) activity of five β-lactams alone or in combination with β-lactamase inhibitors against 41 clinical isolates ofMycobacterium tuberculosis, including multidrug-resistant and extensively drug-resistant strains. Of those, tebipenem, an oral carbapenem, showed the most potent anti-TB activity against clinical isolates, with a MIC range of 0.125 to 8 μg/ml, which is achievable in the human blood. More importantly, in the presence of clavulanate, MIC values of tebipenem declined to 2 μg/ml or less.


Author(s):  
Dipti Pattnaik ◽  
Subhra Snigdha Panda ◽  
Nipa Singh ◽  
Smrutilata Sahoo ◽  
Ipsa Mohapatra ◽  
...  

Background: Multidrug resistance has emerged as a challenge in health care settings. Again increasing prevalence of multidrug resistant (MDR), extensively drug resistant (XDR) and pan drug resistant (PDR) gram negative bacteria is making the condition more critical because of limited options of antibiotics, increasing morbidity, mortality and hospital stay of the patients. The present study is carried out with an aim to estimate the prevalence of MDR, XDR, PDR gram negative bacteria in a tertiary care hospital.Methods: Total of 912 gram negative bacterial isolates obtained from various samples of indoor patients in a tertiary care hospital, were studied over a period of six months. The bacteria were identified by conventional methods. Antibiotic sensitivity testing was done by Kirby Bauer disc diffusion method. Minimum inhibitory concentration (MIC) of antibiotics for the resistant isolates were detected by Vitek-2 automated method. MDR, XDR and PDR were determined according to the definitions suggested by European Centre for Disease Prevention and Control (ECDC), and Centers for Disease Control and Prevention (CDC). Prevalence of extended spectrum beta lactamase (ESBL) producers was estimated.Results: Out of 912 isolates, prevalence of MDR, XDR and PDR were 66.12%, 34.32% and 0.98% respectively. Prevalence of MDR and XDR were higher in ICUs than clinical wards (p<0.0001). Prevalence of ESBL producers was 48.4%.Conclusions: The study highlights increased prevalence of multidrug resistant and extensively drug resistant strains in our hospital. Stringent surveillance, proper implementation of hospital infection control practices and antimicrobial stewardship will help in limiting the emergence and spread of drug resistant strains.


2017 ◽  
Vol 13 (4) ◽  
pp. 27-31
Author(s):  
Leny Jose Biljo V Joseph

We report the detection of extensively drug resistant strains of Mycobacterium tuberculosis in Kerala, India. Earlier we had reported that 22 of 206 local isolates were multidrug resistant. Now, we tested the same isolates for their resistance to ofloxacin and amikacin. Six among the MDR isolates showed resistance to both drugs and therefore fall under XDR category.


Sign in / Sign up

Export Citation Format

Share Document