scholarly journals Forest Fire Prevention, Detection, and Fighting Based on Fuzzy Logic and Wireless Sensor Networks

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Josué Toledo-Castro ◽  
Pino Caballero-Gil ◽  
Nayra Rodríguez-Pérez ◽  
Iván Santos-González ◽  
Candelaria Hernández-Goya ◽  
...  

Huge losses and serious threats to ecosystems are common consequences of forest fires. This work describes a forest fire controller based on fuzzy logic and decision-making methods aiming at enhancing forest fire prevention, detection, and fighting systems. In the proposal, the environmental monitoring of several dynamic risk factors is performed with wireless sensor networks and analysed with the proposed fuzzy-based controller. With respect to this, meteorological variables, polluting gases and the oxygen level are measured in real time to estimate the existence of forest fire risks in the short-term and to detect the recent occurrence of fire outbreaks over different forest areas. Besides, the Analytic Hierarchy Process method is used to determine the level of fire spread, and, when necessary, environmental alerts are sent by a Web service and received by a mobile application. For this purpose, integrity, confidentiality, and authenticity of environmental information and alerts are protected with implementations of Lamport’s authentication scheme, Diffie-Lamport signature, and AES-CBC block cipher.

Author(s):  
Josué Toledo-Castro ◽  
Iván Santos-González ◽  
Pino Caballero-Gil ◽  
Candelaria Hernández-Goya ◽  
Nayra Rodríguez-Pérez ◽  
...  

2018 ◽  
Vol 10 (10) ◽  
pp. 102 ◽  
Author(s):  
Yi-Han Xu ◽  
Qiu-Ya Sun ◽  
Yu-Tong Xiao

Forest fires are a fatal threat to environmental degradation. Wireless sensor networks (WSNs) are regarded as a promising candidate for forest fire monitoring and detection since they enable real-time monitoring and early detection of fire threats in an efficient way. However, compared to conventional surveillance systems, WSNs operate under a set of unique resource constraints, including limitations with respect to transmission range, energy supply and computational capability. Considering that long transmission distance is inevitable in harsh geographical features such as woodland and shrubland, energy-efficient designs of WSNs are crucial for effective forest fire monitoring and detection systems. In this paper, we propose a novel framework that harnesses the benefits of WSNs for forest fire monitoring and detection. The framework employs random deployment, clustered hierarchy network architecture and environmentally aware protocols. The goal is to accurately detect a fire threat as early as possible while maintaining a reasonable energy consumption level. ns-2-based simulation validates that the proposed framework outperforms the conventional schemes in terms of detection delay and energy consumption.


Author(s):  
Jiangjiang Duan ◽  
Boyang Yu ◽  
Wei Yang ◽  
Jia Li ◽  
Wenke Xie ◽  
...  

Harvesting heat from fire itself to power wireless sensor networks has the potential to realize effective detection and alarm for forest fires. Thermocell based on thermogalvanic effect offers an inexpensive...


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 196 ◽  
Author(s):  
Xing Hu ◽  
Linhua Ma ◽  
Yongqiang Ding ◽  
Jin Xu ◽  
Yan Li ◽  
...  

The geographic routing protocol only requires the location information of local nodes for routing decisions, and is considered very efficient in multi-hop wireless sensor networks. However, in dynamic wireless sensor networks, it increases the routing overhead while obtaining the location information of destination nodes by using a location server algorithm. In addition, the routing void problem and location inaccuracy problem also occur in geographic routing. To solve these problems, a novel fuzzy logic-based geographic routing protocol (FLGR) is proposed. The selection criteria and parameters for the assessment of the next forwarding node are also proposed. In FLGR protocol, the next forward node can be selected based on the fuzzy location region of the destination node. Finally, the feasibility of the FLGR forwarding mode is verified and the performance of FLGR protocol is analyzed via simulation. Simulation results show that the proposed FLGR forwarding mode can effectively avoid the routing void problem. Compared with existing protocols, the FLGR protocol has lower routing overhead, and a higher packet delivery rate in a sparse network.


Sign in / Sign up

Export Citation Format

Share Document