scholarly journals An Environmentally Aware Scheme of Wireless Sensor Networks for Forest Fire Monitoring and Detection

2018 ◽  
Vol 10 (10) ◽  
pp. 102 ◽  
Author(s):  
Yi-Han Xu ◽  
Qiu-Ya Sun ◽  
Yu-Tong Xiao

Forest fires are a fatal threat to environmental degradation. Wireless sensor networks (WSNs) are regarded as a promising candidate for forest fire monitoring and detection since they enable real-time monitoring and early detection of fire threats in an efficient way. However, compared to conventional surveillance systems, WSNs operate under a set of unique resource constraints, including limitations with respect to transmission range, energy supply and computational capability. Considering that long transmission distance is inevitable in harsh geographical features such as woodland and shrubland, energy-efficient designs of WSNs are crucial for effective forest fire monitoring and detection systems. In this paper, we propose a novel framework that harnesses the benefits of WSNs for forest fire monitoring and detection. The framework employs random deployment, clustered hierarchy network architecture and environmentally aware protocols. The goal is to accurately detect a fire threat as early as possible while maintaining a reasonable energy consumption level. ns-2-based simulation validates that the proposed framework outperforms the conventional schemes in terms of detection delay and energy consumption.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5379
Author(s):  
Gustavo A. Nunez Segura ◽  
Cintia Borges Margi

Resource Constraints in Wireless Sensor Networks are a key factor in protocols and application design. Furthermore, energy consumption plays an important role in protocols decisions, such as routing metrics. In Software-Defined Networking (SDN)-based networks, the controller is in charge of all control and routing decisions. Using energy as a metric requires such information from the nodes, which would increase packets traffic, impacting the network performance. Previous works have used energy prediction techniques to reduce the number of packets exchanged in traditional distributed routing protocols. We applied this technique in Software-Defined Wireless Sensor Networks (SDWSN). For this, we implemented an energy prediction algorithm for SDWSN using Markov chain. We evaluated its performance executing the prediction on every node and on the SDN controller. Then, we compared their results with the case without prediction. Our results showed that by running the Markov chain on the controller we obtain better prediction and network performance than when running the predictions on every node. Furthermore, we reduced the energy consumption for topologies up to 49 nodes for the case without prediction.


2015 ◽  
Vol 9 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Teng Ma ◽  
Yun Liu ◽  
Junsong Fu ◽  
Ya Jing

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Josué Toledo-Castro ◽  
Pino Caballero-Gil ◽  
Nayra Rodríguez-Pérez ◽  
Iván Santos-González ◽  
Candelaria Hernández-Goya ◽  
...  

Huge losses and serious threats to ecosystems are common consequences of forest fires. This work describes a forest fire controller based on fuzzy logic and decision-making methods aiming at enhancing forest fire prevention, detection, and fighting systems. In the proposal, the environmental monitoring of several dynamic risk factors is performed with wireless sensor networks and analysed with the proposed fuzzy-based controller. With respect to this, meteorological variables, polluting gases and the oxygen level are measured in real time to estimate the existence of forest fire risks in the short-term and to detect the recent occurrence of fire outbreaks over different forest areas. Besides, the Analytic Hierarchy Process method is used to determine the level of fire spread, and, when necessary, environmental alerts are sent by a Web service and received by a mobile application. For this purpose, integrity, confidentiality, and authenticity of environmental information and alerts are protected with implementations of Lamport’s authentication scheme, Diffie-Lamport signature, and AES-CBC block cipher.


Author(s):  
Jiangjiang Duan ◽  
Boyang Yu ◽  
Wei Yang ◽  
Jia Li ◽  
Wenke Xie ◽  
...  

Harvesting heat from fire itself to power wireless sensor networks has the potential to realize effective detection and alarm for forest fires. Thermocell based on thermogalvanic effect offers an inexpensive...


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Sign in / Sign up

Export Citation Format

Share Document