scholarly journals A Simplified Solution for Calculating the Phreatic Line and Slope Stability during a Sudden Drawdown of the Reservoir Water Level

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Guanhua Sun ◽  
Shan Lin ◽  
Wei Jiang ◽  
Yongtao Yang

On the basis of the Boussinesq unsteady seepage differential equation, a new simplified formula for the phreatic line of slopes under the condition of decreasing reservoir water level is derived by means of the Laplacian matrix and its inverse transform. In this context, the expression of normal stress on the slip surface under seepage forces is deduced, and a procedure for obtaining the safety factors under hydrodynamic forces is proposed. A case study of the Three Gorges Reservoir is used to analyze the influences of the water level, decreasing velocity and the permeability coefficient on slope stability.

2020 ◽  
Vol 12 (16) ◽  
pp. 6427
Author(s):  
Chun Li ◽  
Huiming Tang ◽  
Yankun Wang

Reservoir water level fluctuation is one of the main extrinsic factors that could change the stress field in landslides, as well as the mechanical strength of geomaterials, hence affecting the deformation and stability of landslides. The largest reservoir landslide in the Three Gorges Reservoir area was selected for a case study. The impact of reservoir water level fluctuation is represented by the dynamic change in the underground seepage field and was thereby analyzed with numerical modeling. The deformation behavior considering the rheological properties of the slip zone soil was studied. The sudden change in the displacement–time curve was selected as the failure criterion for the investigated landslide. The evolution process of the accelerated deformation stage was divided into slow acceleration, fast acceleration, and rapid acceleration stages. The Huangtupo landslide is characterized by a retrogressive landslide and is currently in the creep deformation stage; the deformation mechanism and deformation characteristics are closely related to the reservoir water level fluctuation. Research was carried out by means of field investigation, in situ monitoring, and numerical simulation to provide a true and reliable result for stability evaluation.


Author(s):  
Zuosen Luo ◽  
Jianlin Li ◽  
Qiao Jiang ◽  
Yinchai Zhang ◽  
Yisheng Huang ◽  
...  

After the commencement of the Three Gorges hydropower project, the reservoir water level has been fluctuating by 30 m (145–175 m) annually. The stability of the bank slope has been highlighted since the reservoir water level has been repeated. Apart from that, the long-term effect of the water-rock interaction on the rheological and mechanical properties of the rock was not studied sufficiently. Therefore, a typical sandstone rock was brought from the Three Gorges reservoir area, to meet the purpose of this study. Then, a series of water-rock interaction tests were conducted to simulate the fluctuations in the reservoir water level. Based upon the experimental results, the following points were pointed out: 1) for the first three successive water-rock interaction cycles, the long-term strength of the rock was dramatically reduced. In contrast, the rate of reduction on the long-term strength of the rock was getting a steady state after six successive water rock interactions.2) At the failure stress level, the rock specimens exhibited similar characteristics under different water-rock interaction cycles. 3) The densely compacted micro structures of the sandstone rock were transformed into loose and porous state.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Javed Iqbal ◽  
Xinbin Tu ◽  
Wei Gao

Filling of Xiangjiaba Reservoir Lake in the Southwest China triggered and reactivated numerous landslides due to water fluctuation. In order to understand the relationship between reservoirs and slope instability, a typical reservoir landslide (Dasha landslide) at the right bank of Jinsha River was selected as a case study for in-depth investigations. The detailed field investigations were carried out to identify the landslide with respect to its surroundings and to find out the slip surface. Boreholes were drilled to find out the subsurface lithology and the depth of failure of Dasha landslide. The in situ geotechnical tests were performed, and the soil samples from exposed slip surface were retrieved for geotechnical laboratory analysis. Finally, stability analysis was done using the 3D strength reduction method under different conditions of reservoir water level fluctuations and rainfall conditions. The in-depth investigations show that the Dasha landslide is a bedding rockslide which was once activated in 1986. The topography of Dasha landslide is relatively flat, while the back scarp and local terrain is relatively steep. The total volume of landslides is about 580×104 m3 with an average thickness of 20 m. Bedrock in the landslide area is composed of Suining Formation of the Jurassic age. The main rock type is silty mudstone with sandstone, and the bedding orientation is 300~310° ∠ 7~22°. The factor of safety (FOS) of Dasha landslide obtained by 3D strength reduction cannot meet the minimum safety requirement under the working condition of reservoir level fluctuation as designed, with effect of rainfall and rapid drawdown.


2021 ◽  
Author(s):  
Zhiqiang Fan ◽  
Yanhao Zheng

Abstract In the Three Gorges Reservoir (TGR) area, the accumulation landslide characterized by stepped slip surfaces is widely developed, and its stability is significantly affected by the fluctuation of reservoir water level. In this paper, the Shuping landslide, a typical accumulation landslide in the TGR area, was selected to study the effect of water level fluctuations on landslide stability. Based on Multi-Circular (M-C) model, it is found that the decline of reservoir water level was the dominant factor causing the decrease of landslide stability. At the end of the decline of reservoir water level, the landslide stability was minimum and the corresponding moment was the most dangerous. The effect of the drawdown speed of reservoir water level on the minimum value of landslide stability had a threshold effect, although the minimum stability coefficient of landslide decreased with the increase of drawdown speed. Under the most dangerous water level conditions, the stability of the piled landslide increased linearly with the increase of the net thrust of piles. Also, by comparing with other classical models, the effectiveness of the M-C model in evaluating landslide stability under the dynamic changes of reservoir water level was verified. The results could provide a reliable scientific basis for improving the stability analysis and reinforcement measures of the accumulation landslide with the multi-circular slip surfaces in the TGR area, as well as can be applied to similar landslides in reservoir areas.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Nenghao Zhao ◽  
Bin Hu ◽  
Qinglin Yi ◽  
Wenmin Yao ◽  
Chong Ma

Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.


Sign in / Sign up

Export Citation Format

Share Document