scholarly journals New Genomic Approaches to Enhance Biomass Degradation by the Industrial FungusTrichoderma reesei

2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Renato Graciano de Paula ◽  
Amanda Cristina Campos Antoniêto ◽  
Liliane Fraga Costa Ribeiro ◽  
Cláudia Batista Carraro ◽  
Karoline Maria Vieira Nogueira ◽  
...  

The filamentous fungiTrichoderma reeseiis one of the most well-studied cellulolytic microorganisms. It is the most important fungus for the industrial production of enzymes to biomass deconstruction being widely used in the biotechnology industry, mainly in the production of biofuels. Here, we performed an analytic review of the holocellulolytic system presented byT. reeseias well as the transcriptional and signaling mechanisms involved with holocellulase expression in this fungus. We also discuss new perspectives about control of secretion and cellulase expression based on RNA-seq and functional characterization data ofT. reeseigrowth in different carbon sources, which comprise glucose, cellulose, sophorose, and sugarcane bagasse.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Qi Wu ◽  
Yiming Luo ◽  
Xiaoyong Wu ◽  
Xue Bai ◽  
Xueling Ye ◽  
...  

Abstract Background Night-break (NB) has been proven to repress flowering of short-day plants (SDPs). Long-noncoding RNAs (lncRNAs) play key roles in plant flowering. However, investigation of the relationship between lncRNAs and NB responses is still limited, especially in Chenopodium quinoa, an important short-day coarse cereal. Results In this study, we performed strand-specific RNA-seq of leaf samples collected from quinoa seedlings treated by SD and NB. A total of 4914 high-confidence lncRNAs were identified, out of which 91 lncRNAs showed specific responses to SD and NB. Based on the expression profiles, we identified 17 positive- and 7 negative-flowering lncRNAs. Co-expression network analysis indicated that 1653 mRNAs were the common targets of both types of flowering lncRNAs. By mapping these targets to the known flowering pathways in model plants, we found some pivotal flowering homologs, including 2 florigen encoding genes (FT (FLOWERING LOCUS T) and TSF (TWIN SISTER of FT) homologs), 3 circadian clock related genes (EARLY FLOWERING 3 (ELF3), LATE ELONGATED HYPOCOTYL (LHY) and ELONGATED HYPOCOTYL 5 (HY5) homologs), 2 photoreceptor genes (PHYTOCHROME A (PHYA) and CRYPTOCHROME1 (CRY1) homologs), 1 B-BOX type CONSTANS (CO) homolog and 1 RELATED TO ABI3/VP1 (RAV1) homolog, were specifically affected by NB and competed by the positive and negative-flowering lncRNAs. We speculated that these potential flowering lncRNAs may mediate quinoa NB responses by modifying the expression of the floral homologous genes. Conclusions Together, the findings in this study will deepen our understanding of the roles of lncRNAs in NB responses, and provide valuable information for functional characterization in future.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Greco ◽  
A Made' ◽  
M Longo ◽  
R Tikhomirov ◽  
S Castelvecchio ◽  
...  

Abstract Background Circular RNAs (circRNAs) are an emerging class of noncoding RNAs stemming from the splicing and circularization of pre-mRNAs exons. CircRNAs can regulate transcription and splicing, sequester microRNAs acting as “sponge” and inducing the respective targets, and bind to RNA binding proteins. Recently, they have been found deregulated in dilated cardiomyopathies (DCM), one of the cardiovascular diseases with the worst rate of morbidity and mortality, and whose molecular mechanisms are only partially known. Purpose Therein, we will evaluate in ischemic DCM patients the modulation of 17 circRNAs, 14 out of them obtained from literature data on DCM ischemic or not, while the other 3 were circRNAs not characterized in the heart previously. The study aims to identify circRNAs candidates for further functional characterization in DCM. In addition, as differential expression (DE) analysis is not easily performed for circRNAs in RNA-seq datasets, the validated circRNAs will be used to set up the most specific and sensitive bioinformatics pipeline for circRNA-DE analysis. Methods We designed divergent and convergent specific primers for 17 circRNAs and their host gene, respectively, and their amplification efficiency was measured by RT-qPCR. Transcripts expression was measured in left ventricle biopsies of 12 patients affected by non end-stage ischemic HF and of 12 matched controls. Results We identified cPVT1, cANKRD17, cBPTF as DE, and validated the modulation of 5 out of the 14 DCM-related circRNAs (cHIPK3, cALPK2, cPCMTD1, cNEBL, cSLC8A1), while cPDRM5, cTTN1 showed opposite modulation, which may be due to the specific disease condition. All of them were modulated differently from the respective host gene. CircRNA/miRNA interactions were predicted using Starbase 3.0. Next, mRNAs-targets of the identified miRNAs were predicted by mirDIP 4.1 and intersected with gene expression datasets of the same patients, previously obtained by microarray analysis. We found that cBPTF and cANKRD17 might sponge 12 and 2 miRNAs, respectively. Enrichment analysis of the relevant targets identified several important pathways implicated in DCM, such as MAPK, FoxO, EGFR, VEGF and Insulin/IGF pathways. In addition, deep RNA-Seq analysis that is currently ongoing and the validated circRNAs will be used to optimize the bioinformatics pipeline for circRNA DE analysis. Conclusions We identified a subset of circRNAs deregulated in ischemic HF potentially implicated in HF pathogenesis.


2014 ◽  
Vol 173 ◽  
pp. 59-64 ◽  
Author(s):  
Xiuzhen Chen ◽  
Yingfeng Luo ◽  
Hongtao Yu ◽  
Yuhui Sun ◽  
Hong Wu ◽  
...  

2011 ◽  
Vol 77 (4-5) ◽  
pp. 323-336 ◽  
Author(s):  
Petra M. Bleeker ◽  
Eleni A. Spyropoulou ◽  
Paul J. Diergaarde ◽  
Hanne Volpin ◽  
Michiel T. J. De Both ◽  
...  

2016 ◽  
Vol 39 (4) ◽  
pp. 1479-1494 ◽  
Author(s):  
Chunliang Xie ◽  
Li Yan ◽  
Wenbing Gong ◽  
Zuohua Zhu ◽  
Senwei Tan ◽  
...  

Background/Aims: Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. Methods and Results: In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. Conclusion: The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation.


2021 ◽  
Author(s):  
Leah M. Williams ◽  
Sainetra Sridhar ◽  
Jason Samaroo ◽  
Ebubechi K. Adindu ◽  
Anvitha Addanki ◽  
...  

In this report, we investigate the evolution of transcription factor NF-κB by examining its structure, activity, and regulation in two protists using phylogenetic, cellular, and biochemical techniques. In Capsaspora owczarzaki (Co), we find that full-length NF-κB has an N-terminal DNA-binding domain and a C-terminal Ankyrin (ANK) repeat inhibitory domain, and its DNA-binding activity is more similar to metazoan NF-κB rather than Rel proteins. As with mammalian NF-κB proteins, removal of the ANK repeats is required for Co-NF-κB to enter the nucleus, bind DNA, and activate transcription. However, C-terminal processing of Co-NF-κB is not induced by co-expression of IKK in human cells. Exogenously expressed Co-NF-κB localizes to the nucleus in Co cells. NF-κB mRNA and DNA-binding levels differ across three life stages of Capsaspora, suggesting distinct roles for NF-κB in these life stages. RNA-seq and GO analyses identify possible gene targets and biological functions of Co-NF-κB. We also show that three NF-κB-like proteins from the choanoflagellate Acanthoeca spectabilis (As) all consist of primarily the N-terminal conserved Rel Homology domain sequences of NF-κB, and lack C-terminal ANK repeats. All three As-NF-κB proteins constitutively enter the nucleus of human and Co cells, but differ in their DNA-binding and transcriptional activation activities. Furthermore, all three As-NF-κB proteins can form heterodimers, indicating that NF-κB diversified into multi-subunit families at least two times during evolution. Overall, these results present the first functional characterization of NF-κB in a taxonomic kingdom other than Animalia and provide information about the evolution and diversification of this biologically important transcription factor.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Zachary Armstrong ◽  
Feng Liu ◽  
Sam Kheirandish ◽  
Hong-Ming Chen ◽  
Keith Mewis ◽  
...  

ABSTRACT Functional metagenomics is a powerful tool for both the discovery and development of biocatalysts. This study presents the high-throughput functional screening of 22 large-insert fosmid libraries containing over 300,000 clones sourced from natural and engineered ecosystems, characterization of active clones, and a demonstration of the utility of recovered genes or gene cassettes in the development of novel biocatalysts. Screening was performed in a 384-well-plate format with the fluorogenic substrate 4-methylumbelliferyl cellobioside, which releases a fluorescent molecule when cleaved by β-glucosidases or cellulases. The resulting set of 164 active clones was subsequently interrogated for substrate preference, reaction mechanism, thermal stability, and optimal pH. The environmental DNA harbored within each active clone was sequenced, and functional annotation revealed a cornucopia of carbohydrate-degrading enzymes. Evaluation of genomic-context information revealed both synteny and polymer-targeting loci within a number of sequenced clones. The utility of these fosmids was then demonstrated by identifying clones encoding activity on an unnatural glycoside (4-methylumbelliferyl 6-azido-6-deoxy-β-d-galactoside) and transforming one of the identified enzymes into a glycosynthase capable of forming taggable disaccharides. IMPORTANCE The generation of new biocatalysts for plant biomass degradation and glycan synthesis has typically relied on the characterization and investigation of one or a few enzymes at a time. By coupling functional metagenomic screening and high-throughput functional characterization, we can progress beyond the current scale of catalyst discovery and provide rapid annotation of catalyst function. By functionally screening environmental DNA from many diverse sources, we have generated a suite of active glycoside hydrolase-containing clones and demonstrated their reaction parameters. We then demonstrated the utility of this collection through the generation of a new catalyst for the formation of azido-modified glycans. Further interrogation of this collection of clones will expand our biocatalytic toolbox, with potential application to biomass deconstruction and synthesis of glycans.


2018 ◽  
Vol 93 (1) ◽  
pp. 128-146 ◽  
Author(s):  
Jae Wook Lee ◽  
Mohammad Alsady ◽  
Chung-Lin Chou ◽  
Theun de Groot ◽  
Peter M.T. Deen ◽  
...  
Keyword(s):  
Rna Seq ◽  

Sign in / Sign up

Export Citation Format

Share Document