scholarly journals Comprehensive Evaluation of Offshore Oilfield Development Plans Based on Grey Clustering Analysis with Cloud Model

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chao Min ◽  
Guoquan Wen ◽  
Binrui Li ◽  
Xiaochan Zhao

Taking the development plans of an offshore oilfield as an example, a new comprehensive evaluation method, the improved Grey Clustering Analysis based on the cloud model (GCAC), is presented in this paper, which takes the ambiguity, randomness, and uncertainty of data into account and overcomes the limits of the general methods, such as subjective prejudice and objective randomness. GCAC converts the data of the oilfield development plans into a cloud, which considers the data of fuzziness, randomness, and the relationship between them. The grey membership degree of each development plan is calculated by this cloud model and an improved grey whitened function is presented in this paper. Then the plans are reordered by their grey membership degrees. In order to make more reasonable consideration of the artificial or unartificial uncertainties, GCAC combines the Grey Entropy Weighting method, Analytical Hierarchy Process (AHP), and Expert Assessment method to determine the weights of each level of indexes, which makes the weights more reasonable and reduces the randomness and the fuzziness of data. GCAC can help obtain a better comparison between the development plans. The reliability of this method is verified by the calculation results.

2021 ◽  
pp. 1-18
Author(s):  
Xiaoqing Huang ◽  
Zhilong Wang ◽  
Shihao Liu

In order to solve the problem of health evaluation of CNC machine tools, an evaluation method based on grey clustering analysis and fuzzy comprehensive evaluation was proposed. The health status grade of in-service CNC machine tools was divided, and the performance indicator system of CNC machine tools was constructed. On the above basis, the relative importance of each performance and its indicators were combined, and grey clustering analysis and fuzzy comprehensive evaluation was utilized to evaluate the health status of in-service CNC machine tools to determine their health grade. The proposed health status evaluation method was applied to evaluate the health level of an in-service gantry CNC machine that can be used for the machining propellers, and the results shown that the health status of the whole gantry CNC machine tool is healthy. The proposed evaluation method provides useful references for further in-depth research on the health status analysis and optimization of CNC machine tools.


2013 ◽  
Vol 438-439 ◽  
pp. 1612-1618
Author(s):  
Yong Jia Song ◽  
Cong Cong Jin ◽  
Xian Cai Zhang ◽  
Jing Li

This paper proposes a new risk assessment model on account of the fuzziness and uncertainty of risk factors in the reservoir after earthquake. The paper adopts methods of information entropy and fuzzy mathematics to assess risk level of the model. After analyzing the statistical data of earthquake-damaged reservoirs, we present comprehensive weight composed of importance and improved entropy weight. Base on comprehensive weight, we can adopt membership function to establish single factor evaluation of the model. Moreover, we combine fuzzy weighting method to assess risk level of a reservoir after earthquake. The result shows that risk level of the reservoir is high-risk. The case study verifies the practicability and rationality of the risk assessment method. Therefore, the method could be applied in the emergency rescue and reinforcement for reservoir after earthquake.


2021 ◽  
pp. 1-14
Author(s):  
Fuwei Liu ◽  
Yansen Wang

The freezing pipe fracture can cause freezing wall to thaw and even lead to major accidents such as mine flooding easily, which seriously threatens the safety in construction. Therefore, scientific and effective comprehensive risk assessment for freezing pipe fracture is of great significance. In this work, a risk assessment method is put forward based on improved AHP-Cloud model with 19 evaluation indicators. First, the multi-dimension evaluation index system and evaluation model are established, on the basis of in-depth analysis of the risk factors that may lead to accidents. Second, synthesizing the normalization process and the improved analytic hierarchy process (AHP), the evaluation grade cloud and comprehensive evaluation cloud of freezing pipe fracture can be acquired by using the forward cloud generator. Finally, According to the max-subjection principle and the comprehensive evaluation method, we obtain the risk level of freezing pipe fracture. The model is applied to Yangcun Coal Mine. It has been verified that the risk assessment problem of freezing pipe fracture in freezing sinking can be successfully solved by the model we proposed. Above all, the study offers a new research idea for the risk management of freezing pipe fracture in freeze sinking.


2014 ◽  
Vol 521 ◽  
pp. 245-251
Author(s):  
Kai Xu ◽  
Xiao Yu Ding ◽  
Hong Wei Chen ◽  
Quan Yuan Jiang ◽  
Ke Sun ◽  
...  

With the number of power transmission and transformation projects increasing, it needs to consider more indices information and utilize more comprehensive evaluation methods in the decision-making of building schemes. As a consequence, a comprehensive evaluation indices system, including the indices of network security, economy, environmental friendliness, adaptation and coordination of the power transmission and transformation engineering system, is firstly built to evaluation construction schemes. Then this paper proposes a multi-attribute comprehensive evaluation method for power transmission and transformation projects. In this method, the optimal combination weighting method based on the moment estimation is adopted to weight for every index. It can overcome the weakness of the subjective weighting methods and the objective methods. After that, the optimal scheme is obtained by the grey correlation-cosine prioritizing evaluation method, which can take into account the distance and angle information of schemes. Finally, the example shows this method can fully consider overall information of each index, having good operability.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1710 ◽  
Author(s):  
Fei Guan ◽  
Wei-Wei Cui ◽  
Lian-Feng Li ◽  
Jie Wu

Sensor selection plays an essential and fundamental role in prognostics and health management technology, and it is closely related to fault diagnosis, life prediction, and health assessment. The existing methods of sensor selection do not have an evaluation standard, which leads to different selection results. It is not helpful for the selection and layout of sensors. This paper proposes a comprehensive evaluation method of sensor selection for prognostics and health management (PHM) based on grey clustering. The described approach divides sensors into three grey classes, and defines and quantifies three grey indexes based on a dependency matrix. After a brief introduction to the whitening weight function, we propose a combination weight considering the objective data and subjective tendency to improve the effectiveness of the selection result. Finally, the clustering result of sensors is obtained by analyzing the clustering coefficient, which is calculated based on the grey clustering theory. The proposed approach is illustrated by an electronic control system, in which the effectiveness of different methods of sensor selection is compared. The result shows that the technique can give a convincing analysis result by evaluating the selection results of different methods, and is also very helpful for adjusting sensors to provide a more precise result. This approach can be utilized in sensor selection and evaluation for prognostics and health management.


2014 ◽  
Vol 644-650 ◽  
pp. 2194-2197
Author(s):  
Jie Yao ◽  
Zhao Lin Wu ◽  
Zhi Yuan Xu ◽  
Yu Qing Ren

The safety evaluation of fishing vessels is a system and uncertain problem. A fishing vessel safety evaluation algorithm based on cloud model was proposed in this paper. Firstly, we established index system and weights by the AHP; Secondly, the cloud generator completed the conversion between qualitative and quantitative indicators; Thirdly, the evaluation cloud model was achieved by the comprehensive cloud algorithm; Finally, the forward cloud generator restored the droplet distribution. Compared with the fuzzy comprehensive evaluation method, the experimental results show that our work is effective and accurate.


2013 ◽  
Vol 291-294 ◽  
pp. 2217-2221
Author(s):  
Hai Yan Wang ◽  
Wei Li ◽  
Xin Wei Du ◽  
Quan Ming Zhang ◽  
Song Ling Dai ◽  
...  

With integrated consideration of existing research on power grid development evaluation index system and requirements of power grid development diagnosis, a more comprehensive power grid development diagnostic index system is established from five aspects of power grid security and reliability, high efficiency, coordination, economics and social environment and more than 20 indicators. In addition, a new power grid development diagnostic evaluation method based on hierarchical analysis and multi-level fuzzy comprehensive evaluation is proposed in order to diagnose and assess power grid status quo and the actual level of development comprehensively, objectively and systematically ,which will help power grid enterprises conveniently to find the main reason of affecting the power grid and enterprise development and encourage enterprises to continuously improve the targeted improvement measures and the level of grid development.


Sign in / Sign up

Export Citation Format

Share Document