scholarly journals Corrigendum to “A Case Study of Mass Transport during the East-West Oscillation of the Asian Summer Monsoon Anticyclone”

2018 ◽  
Vol 2018 ◽  
pp. 1-1
Author(s):  
Jiali Luo ◽  
Jiayao Song ◽  
Hongying Tian ◽  
Lei Liu ◽  
Xinlei Liang
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jiali Luo ◽  
Jiayao Song ◽  
Hongying Tian ◽  
Lei Liu ◽  
Xinlei Liang

We use ERA-Interim reanalysis, MLS observations, and a trajectory model to examine the chemical transport and tracers distribution in the Upper Troposphere and Lower Stratosphere (UTLS) associated with an east-west oscillation case of the anticyclone in 2016. The results show that the spatial distribution of water vapor (H2O) was more consistent with the location of the anticyclone than carbon monoxide (CO) at 100 hPa, and an independent relative high concentration center was only found in H2O field. At 215 hPa, although the anticyclone center also migrated from the Tibetan Mode (TM) to the Iranian Mode (IM), the relative high concentration centers of both tracers were always colocated with regions where upward motion was strong in the UTLS. When the anticyclone migrated from the TM, air within the anticyclone over Tibetan Plateau may transport both westward and eastward but was always within the UTLS. The relative high concentration of tropospheric tracers within the anticyclone in the IM was from the east and transported by the westward propagation of the anticyclone rather than being lifted from surface directly. Air within the relative high geopotential height centers over Western Pacific was partly from the main anticyclone and partly from lower levels.


2020 ◽  
Author(s):  
Jiali Luo ◽  
Kecheng Peng

<p>During the Asian summer monsoon (ASM) season, the stratosphere-troposphere exchange (STE) process has a significant effect on the stratospheric chemical constituent concentration and spatial distribution. In order to further explain the STE process during the ASM season, the impact of ASMA intensity on chemical species within the anticyclone escaping process during the ASM season is studied. Using the MERRA 2, NCEP reanalysis data and MLS satellite data in June, July and August (JJA) of 2004-2017, the relationship between the day-to-day intensity variation of the ASMA and the horizontal distribution of ozone (O<sub>3</sub>) and carbon monoxide (CO) during the intra-seasonal east-west oscillation is discussed based on an ASMA intensity index we defined. The results show that the intensity of the ASMA varied during the intra-seasonal east-west oscillation. The ASMA intensity index increased continuously from early June and peaked during mid-July to early August. ASMA has a constraints effect on the air inside. Its intra-seasonal oscillation and its intensity influenced the chemical distribution in the upper troposphere and lower stratosphere (UTLS). The distribution of chemical substances during its strong periods (SP) were relatively concentrated than that in weaker periods (WP). The air inside of the ASMA was easier to mix into stratosphere when the intensity was weak, and vice verse. The intensity variation of the ASMA caused by its intra-seasonal oscillation may affect the STE process during the Asian summer monsoon season.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuhei Takaya ◽  
Yu Kosaka ◽  
Masahiro Watanabe ◽  
Shuhei Maeda

AbstractThe interannual variability of the Asian summer monsoon has significant impacts on Asian society. Advances in climate modelling have enabled us to make useful predictions of the seasonal Asian summer monsoon up to approximately half a year ahead, but long-range predictions remain challenging. Here, using a 52-member large ensemble hindcast experiment spanning 1980–2016, we show that a state-of-the-art climate model can predict the Asian summer monsoon and associated summer tropical cyclone activity more than one year ahead. The key to this long-range prediction is successfully simulating El Niño-Southern Oscillation evolution and realistically representing the subsequent atmosphere–ocean response in the Indian Ocean–western North Pacific in the second boreal summer of the prediction. A large ensemble size is also important for achieving a useful prediction skill, with a margin for further improvement by an even larger ensemble.


Sign in / Sign up

Export Citation Format

Share Document