scholarly journals Boron-Doped Carbon Nano-/Microballs from Orthoboric Acid-Starch: Preparation, Characterization, and Lithium Ion Storage Properties

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xinhua Lu ◽  
Lin Chen

A boron-doped carbon nano-/microballs (BC) was successfully obtained via a two-step procedure including hydrothermal reaction (180°C) and carbonization (800°C) with cheap starch and H3BO3 as the carbon and boron source. As a new kind of boron-doped carbon, BC contained 2.03 at% B-content and presented the morphology as almost perfect nano-/microballs with different sizes ranging from 500 nm to 5 μm. Besides that, due to the electron deficient boron, BC was explored as anode material and presented good lithium storage performance. At a current density of 0.2 C, the first reversible specific discharge capacity of BC electrode reached as high as 964.2 mAh g–1 and kept at 699 mAh g–1 till the 11th cycle. BC also exhibited good cycle ability with a specific capacity of 356 mAh g–1 after 79 cycles at a current density of 0.5 C. This work proved to be an effective approach for boron-doped carbon nanostructures which has potential usage for lithium storage material.

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 603 ◽  
Author(s):  
Yuxia Liu ◽  
Kai Jiang ◽  
Shuting Yang

A novel integrated electrode structure was designed and synthesized by direct electrodepositing of Cu–Sn alloy anode materials on the Celgard 2400 separator (Cel-CS electrode). The integrated structure of the Cel-CS electrode not only greatly simplifies the battery fabrication process and increases the energy density of the whole electrode, but also buffers the mechanical stress caused by volume expansion of Cu–Sn alloy active material; thus, effectively preventing active material falling off from the substrate and improving the cycle stability of the electrode. The Cel-CS electrode exhibits excellent cycle performance and superior rate performance. A capacity of 728 mA·h·g−1 can be achieved after 250 cycles at the current density of 100 mA·g−1. Even cycled at a current density of 5 A·g−1 for 650 cycles, the Cel-CS electrode maintained a specific capacity of 938 mA·h·g−1, which illustrates the potential application prospects of the Cel-CS electrode in microelectronic devices and systems.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850067 ◽  
Author(s):  
Zheng Xing ◽  
Chunlai Huang ◽  
Yichen Deng ◽  
Yulong Zhao ◽  
Zhicheng Ju

A flexible strategy is to exploit encapsulating Si nanoparticles into N-doping carbon film (Si-NC) that can effectively localize the Si nanoparticles, thereby solving the problem of serious volume change during cycling as well as facilitating the fast diffusion of Li[Formula: see text], and thus achieving improved anode performance. A maximum capacity of 883.1[Formula: see text]mAh[Formula: see text]g[Formula: see text] at the current density of 100[Formula: see text]mA[Formula: see text]g[Formula: see text] after 50 charge and discharge processes is achieved for Si-NC. Even at a large current density of 2000[Formula: see text]mA[Formula: see text]g[Formula: see text], a specific capacity of 415[Formula: see text]mAh[Formula: see text]g[Formula: see text] is maintained. Moreover, the charge capacity can still almost recover the initial capacity as the current density is reverted to 100[Formula: see text]mA[Formula: see text]g[Formula: see text], indicating that Si-NC has a superior rate performance in lithium storage. This facile synthesis route provides a new perspective to produce Si/C composite at a low cost and large scale with good electrochemical performance.


2021 ◽  
Author(s):  
Yuan Fang ◽  
Tengfei Li ◽  
Fen Wang ◽  
Jianfeng Zhu

Abstract Transition metal oxides as anode materials have received extensive research owing to the high specific capacity. Whereas, the rapid decline of battery capacity caused by volume expansion and low electrical conductivity hinders the practical application of transition metal oxides. This study reported a pseudo-capacitance material polypyrrole coated Fe2O3/Mn2O3 composites material as a high stability anode for lithium-ion batteries. The polypyrrole coating layer can not only serve as a conductive network to improve electrode conductivity but also can be used as a protective buffer layer to suppress the volume change of Fe2O3/Mn2O3 during the charging and discharging process. At the same time, the porous structure of Fe2O3/Mn2O3 composite can not only provide more active sites for lithium storage but also play a certain buffer effect on the volume change of the material. Polypyrrole-coated Fe2O3/Mn2O3 composite as the anode for lithium-ion batteries shows great electrochemical storage performance, with high specific capacity (627 mAh g− 1 at a current density of 1A g− 1), great cycle stability (the capacity not shows obvious signs of attenuation after 500 cycles) and rate performance (432 mAh g− 1 at a current density of 2.0 A g− 1).


2013 ◽  
Vol 582 ◽  
pp. 103-106
Author(s):  
Wonk Yun Lee ◽  
Shinya Suzuki ◽  
Masaru Miyayama

Electrochemical properties of defect-introduces graphenes for lithium ion batteries were investigated. Graphene sheets (GSs) were prepared from graphite through treating with oxidizing agent followed by rapid thermal exfoliation. Defect concentration was controlled by selecting the number of times of oxidation of graphite. GSs electrodes derived from 1, 2 and 3 times-oxidized graphite oxides exhibited a high charge capacity of 1250, 1790 and 2310 mAh g1, respectively, at the 20th cycle at a current density of 100 mA g1. The enhanced capacity is assumed to be due to additional lithium storage sites such as defects and edges.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongsheng Zhou ◽  
Yingchun Zhu ◽  
Bingshe Xu ◽  
Xueji Zhang ◽  
Khalid A. Al-Ghanim ◽  
...  

Abstract Lithium-ion batteries (LIBs) are considered new generation of large-scale energy-storage devices. However, LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability. In this work, we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes (NBNTs) for LIBs. The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAh g−1 at a current density of 0.1 A g−1, and was able to maintain a stable reversible discharge capacity of 1109 mAh g−1 at a current density of 0.5 A g−1 with coulombic efficiency reaching almost 100% for 200 cycles. The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks, the incorporation of nitrogen doping, and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods.


2016 ◽  
Vol 113 (26) ◽  
pp. 7094-7099 ◽  
Author(s):  
Kun (Kelvin) Fu ◽  
Yunhui Gong ◽  
Jiaqi Dai ◽  
Amy Gong ◽  
Xiaogang Han ◽  
...  

Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1302
Author(s):  
Danning Kang ◽  
Jun Li ◽  
Yuyao Zhang

Titanium dioxide (TiO2), as a potential anode material applied for lithium-ion batteries (LIBs), is constrained due to its poor theoretical specific capacity (335 mAh·g−1) and low conductivity (10−7-10−9 S·cm−1). When compared to TiO2, NiO with a higher theoretical specific capacity (718 mAh·g−1) is regarded as an alternative dopant for improving the specific capacity of TiO2. The present investigations usually assemble TiO2 and NiO with a simple bilayer structure and without NiO that is immersed into the inner of TiO2, which cannot fully take advantage of NiO. Therefore, a new strategy was put forward to utilize the synergistic effect of TiO2 and NiO, namely doping NiO into the inner of TiO2. NiO-TiO2 was fabricated into the nanofibers with a higher specific surface area to further improve their electrochemical performance due to the transportation path being greatly shortened. NiO-TiO2 nanofibers are expected to replace of the commercialized anode material (graphite). In this work, a facile one-step electrospinning method, followed by annealing, was applied to synthesize the Ni-doped TiO2 nanofibers. The Ni doping content was proven to be a crucial factor affecting phase constituents, which further determined the electrochemical performance. When the Ni doping content was less than 3 wt.%, the contents of anatase and NiO were both increased, while the rutile content was decreased in the nanofibers. When the Ni doping content exceeded 3 wt.%, the opposite changes were observed. Hence, the optimum Ni doping content was determined as 3 wt.%, at which the highest weight fractions of anatase and NiO were obtained. Correspondingly, the obtained electronic conductivity of 4.92 × 10−5 S⋅cm−1 was also the highest, which was approximately 1.7 times that of pristine TiO2. The optimal electrochemical performance was also obtained. The initial discharge and charge specific capacity was 576 and 264 mAh·g−1 at a current density of 100 mA·g−1. The capacity retention reached 48% after 100 cycles, and the coulombic efficiency was about 100%. The average discharge specific capacity was 48 mAh·g−1 at a current density of 1000 mA·g−1. Approximately 65.8% of the initial discharge specific capacity was retained when the current density was recovered to 40 mA·g−1. These excellent electrochemical results revealed that Ni-doped TiO2 nanofibers could be considered to be promising anode materials for LIBs.


2016 ◽  
Vol 24 (05) ◽  
pp. 1750070
Author(s):  
CHANGWEI SU ◽  
MENGCHAO YE ◽  
YANG BAI ◽  
JIANPING HOU ◽  
JUNMING GUO

Amorphous molybdenum oxide films with almost 20[Formula: see text][Formula: see text]m thickness are electrodeposited on the Cu foils from a citrate-ammonia molybdate bath containing Ni[Formula: see text] ions. The content of Ni in the oxide films is very low, 0.87 at.%. XRD and FTIR data suggest that they are composed of hydrous MoO2. The multilayer and cracked structures are characterized by scanning electron microscopy (SEM), and are beneficial to transmission of Li[Formula: see text] ions between the electrolyte and anode materials. Galvanostatic battery testing shows that amorphous molybdenum (IV) oxides as anodes for lithium-ion batteries exhibit a high specific capacity of 876[Formula: see text]mA[Formula: see text]h[Formula: see text]g[Formula: see text] at a current density of 50[Formula: see text]mA[Formula: see text]g[Formula: see text], good capacity retention as high as 97.4% after 20 cycles.


2015 ◽  
Vol 3 (47) ◽  
pp. 24148-24154 ◽  
Author(s):  
Jieqiong Shan ◽  
Yuxin Liu ◽  
Ping Liu ◽  
Yanshan Huang ◽  
Yuezeng Su ◽  
...  

A dual-doping approach for N–C@SnO2–SnS/GN with 2D core–shell architecture has been developed. Used as the anode material in LIBs, it delivers a high specific capacity of 1236 mA h g−1 at a current density of 0.1 A g−1 after 110 cycles.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Long Ren ◽  
K. N. Hui ◽  
K. S. Hui ◽  
Yundan Liu ◽  
Xiang Qi ◽  
...  

Abstract New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydrothermal reaction. This unique architecture of HPGA prevents the stacking of GNS and promises more electrochemically active sites that enhance the electrochemical storage level significantly. HPGA, as a lithium-ion battery anode, exhibited superior electrochemical performance, including a high reversible specific capacity of 1100 mAh/g at a current density of 0.1 A/g, outstanding cycling stability and excellent rate performance. Even at a large current density of 20 A/g, the reversible capacity was retained at 300 mAh/g, which is larger than that of most porous carbon-based anodes reported, suggesting it to be a promising candidate for energy storage. The proposed 3D HPGA is expected to provide an important platform that can promote the development of 3D topological porous systems in a range of energy storage and generation fields.


Sign in / Sign up

Export Citation Format

Share Document