scholarly journals Pharmacological Inhibition of Caspase-1 Ameliorates Cisplatin-Induced Nephrotoxicity through Suppression of Apoptosis, Oxidative Stress, and Inflammation in Mice

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jung-Yeon Kim ◽  
Jae-Hyung Park ◽  
Kiryeong Kim ◽  
Jungmin Jo ◽  
Jaechan Leem ◽  
...  

Caspase-1 is a proinflammatory caspase responsible for the proteolytic conversion of the precursor forms of interleukin-1β to its active form and plays an important role in the pathogenesis of various inflammatory diseases. It was reported that genetic deficiency of caspase-1 prevented cisplatin-induced nephrotoxicity. However, whether pharmacological inhibition of caspase-1 also has a preventive effect against cisplatin-induced kidney injury has not been evaluated. In this study, we examined the effect of Ac-YVAD-cmk, a potent caspase-1-specific inhibitor, on renal function and histology in cisplatin-treated mice and explored its underlying mechanisms. We found that administration of Ac-YVAD-cmk effectively attenuated cisplatin-induced renal dysfunction, as evidenced by reduced plasma levels of blood urea nitrogen and creatinine, and histological abnormalities, such as tubular cell death, dilatation, and cast formation. Administration of Ac-YVAD-cmk inhibited caspase-3 activation as well as caspase-1 activation and attenuated apoptotic cell death, as assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, in the kidneys of cisplatin-treated mice. Cisplatin-induced G2/M arrest of renal tubular cells was also reduced by caspase-1 inhibition. In addition, administration of Ac-YVAD-cmk reversed increased oxidative stress and depleted antioxidant capacity after cisplatin treatment. Moreover, increased macrophage accumulation and elevated expression of cytokines and chemokines were attenuated by caspase-1 inhibition. Taken together, these results suggest that caspase-1 inhibition by Ac-YVAD-cmk protects against cisplatin-induced nephrotoxicity through inhibition of renal tubular cell apoptosis, oxidative stress, and inflammatory responses. Our findings support the idea that caspase-1 may be a promising pharmacological target for the prevention of cisplatin-induced kidney injury.

2019 ◽  
Vol 317 (5) ◽  
pp. F1311-F1317 ◽  
Author(s):  
Huan Yang ◽  
Ruizhao Li ◽  
Li Zhang ◽  
Shu Zhang ◽  
Wei Dong ◽  
...  

Ischemia-reperfusion (I/R)-induced acute kidney injury (I/R-AKI) favors mitochondrial permeability transition pore (mPTP) opening and subsequent cell death. Cyclophilin D (CypD) is an essential component of the mPTP, and recent findings have implicated the p53-CypD complex in cell death. To evaluate the role of p53-CypD after I/R-AKI, we tested the hypothesis that the p53-CypD complex mediates renal tubular cell apoptosis in I/R-AKI via mPTP opening. Expression of p53 and cleaved caspase-3 was significantly increased in rats subjected to I/R-AKI compared with normal controls and sham-operated controls. The underlying mechanisms were determined using an in vitro model of ATP depletion. Inhibition of mPTP opening using the CypD inhibitor cyclosporin A or siRNA for p53 in ATP-depleted HK-2 cells prevented mitochondrial membrane depolarization and reduced apoptosis. Furthermore, p53 bound to CypD in ATP-depleted HK-2 cells. These results suggest that the p53-CypD complex mediates renal tubular cell apoptosis in I/R-AKI via mPTP opening.


2013 ◽  
Vol 304 (4) ◽  
pp. F356-F366 ◽  
Author(s):  
Song He ◽  
Na Liu ◽  
George Bayliss ◽  
Shougang Zhuang

Proliferation of dedifferentiated intrinsic renal tubular cells has been recognized to be the major cellular event that contributes to renal repair after acute kidney injury (AKI). However, the underlying mechanism that initiates renal tubular dedifferentiation in vivo remains unexplored. Here we investigated whether epidermal growth factor receptor (EGFR) mediates this process in a murine model of folic acid (FA)-induced AKI using waved-2 mice that have reduced tyrosine kinase activity of EGFR and gefitinib, a specific EGFR inhibitor. Administration of FA for 48 h induced EGFR phosphorylation in the kidney of wild-type mice, but this was inhibited in waved-2 mice and wild-type mice given gefitinib. Compared with wild-type mice, waved-2 mice and wild-type mice treated with gefitinib had increased renal dysfunction, histologic damage, and tubular cell apoptosis after FA administration. PAX2, a dedifferentiation marker, and proliferating cell nuclear antigen, a proliferating marker, were highly expressed in renal tubular cells in wild-type mice; however, their expression was largely inhibited in the kidney of waved-2 mice. Inhibition of EGFR with gefitinib also blocked FA-induced expression of these two proteins in wild-type mice. Moreover, FA exposure resulted in phosphorylation of AKT, a downstream signaling molecule of the phosphatidylinositol 3-kinases pathway associated with renal epithelial proliferation in wild-type mice, and its phosphorylation was totally suppressed in waved-2 mice and wild-type mice given gefitinib. Taken together, these results suggest that EGFR activation is essential for initiation of renal tubular cell dedifferentiation and proliferation after AKI.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yongjun Zhu ◽  
Hongwang Cui ◽  
Jie Lv ◽  
Haiqin Liang ◽  
Yanping Zheng ◽  
...  

AbstractAbnormal renin-angiotensin system (RAS) activation plays a critical role in the initiation and progression of chronic kidney disease (CKD) by directly mediating renal tubular cell apoptosis. Our previous study showed that necroptosis may play a more important role than apoptosis in mediating renal tubular cell loss in chronic renal injury rats, but the mechanism involved remains unknown. Here, we investigate whether blocking the angiotensin II type 1 receptor (AT1R) and/or angiotensin II type 2 receptor (AT2R) beneficially alleviates renal tubular cell necroptosis and chronic kidney injury. In an angiotensin II (Ang II)-induced renal injury mouse model, we found that blocking AT1R and AT2R effectively mitigates Ang II-induced increases in necroptotic tubular epithelial cell percentages, necroptosis-related RIP3 and MLKL protein expression, serum creatinine and blood urea nitrogen levels, and tubular damage scores. Furthermore, inhibition of AT1R and AT2R diminishes Ang II-induced necroptosis in HK-2 cells and the AT2 agonist CGP42112A increases the percentage of necroptotic HK-2 cells. In addition, the current study also demonstrates that Losartan and PD123319 effectively mitigated the Ang II-induced increases in Fas and FasL signaling molecule expression. Importantly, disruption of FasL significantly suppressed Ang II-induced increases in necroptotic HK-2 cell percentages, and necroptosis-related proteins. These results suggest that Fas and FasL, as subsequent signaling molecules of AT1R and AT2R, might involve in Ang II-induced necroptosis. Taken together, our results suggest that Ang II-induced necroptosis of renal tubular cell might be involved both AT1R and AT2R and the subsequent expression of Fas, FasL signaling. Thus, AT1R and AT2R might function as critical mediators.


2017 ◽  
Vol 313 (4) ◽  
pp. F906-F913 ◽  
Author(s):  
Wei Zhang ◽  
Xiangjun Zhou ◽  
Qisheng Yao ◽  
Yutao Liu ◽  
Hao Zhang ◽  
...  

Exosomes are nano-sized vesicles produced and secreted by cells to mediate intercellular communication. The production and function of exosomes in kidney tissues and cells remain largely unclear. Hypoxia is a common pathophysiological condition in kidneys. This study was designed to characterize exosome production during hypoxia of rat renal proximal tubular cells (RPTCs), investigate the regulation by hypoxia-inducible factor-1 (HIF-1), and determine the effect of the exosomes on ATP-depletion-induced tubular cell injury. Hypoxia did not change the average sizes of exosomes secreted by RPTCs, but it significantly increased exosome production in a time-dependent manner. HIF-1 induction with dimethyloxalylglycine also promoted exosome secretion, whereas pharmacological and genetic suppression of HIF-1 abrogated the increase of exosome secretion under hypoxia. The exosomes from hypoxic RPTCs had inhibitory effects on apoptosis of RPTCs following ATP depletion. The protective effects were lost in the exosomes from HIF-1α knockdown cells. It is concluded that hypoxia stimulates exosome production and secretion in renal tubular cells. The exosomes from hypoxic cells are protective against renal tubular cell injury. HIF-1 mediates exosome production during hypoxia and contributes to the cytoprotective effect of the exosomes.


2020 ◽  
Vol 888 ◽  
pp. 173574
Author(s):  
Yue Wang ◽  
Ran Bi ◽  
Fei Quan ◽  
Qiuhua Cao ◽  
Yanting Lin ◽  
...  

2020 ◽  
Vol 319 (6) ◽  
pp. F1015-F1026
Author(s):  
Wei Zhang ◽  
Yinjie Guan ◽  
George Bayliss ◽  
Shougang Zhuang

Sepsis-associated acute kidney injury (SA-AKI) is associated with high mortality rates, but clinicians lack effective treatments except supportive care or renal replacement therapies. Recently, histone deacetylase (HDAC) inhibitors have been recognized as potential treatments for acute kidney injury and sepsis in animal models; however, the adverse effect generated by the use of pan inhibitors of HDACs may limit their application in people. In the present study, we explored the possible renoprotective effect of a selective class IIa HDAC inhibitor, TMP195, in a murine model of SA-AKI induced by lipopolysaccharide (LPS). Administration of TMP195 significantly reduced increased serum creatinine and blood urea nitrogen levels and renal damage induced by LPS; this was coincident with reduced expression of HDAC4, a major isoform of class IIa HDACs, and elevated histone H3 acetylation. TMP195 treatment following LPS exposure also reduced renal tubular cell apoptosis and attenuated renal expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, two biomarkers of tubular injury. Moreover, LPS exposure resulted in increased expression of BAX and cleaved caspase-3 and decreased expression of Bcl-2 and bone morphogenetic protein-7 in vivo and in vitro; TMP195 treatment reversed these responses. Finally, TMP195 inhibited LPS-induced upregulation of multiple proinflammatory cytokines/chemokines, including intercellular adhesion molecule-1, monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-1β, and accumulation of inflammatory cells in the injured kidney. Collectively, these data indicate that TMP195 has a powerful renoprotective effect in SA-AKI by mitigating renal tubular cell apoptosis and inflammation and suggest that targeting class IIa HDACs might be a novel therapeutic strategy for the treatment of SA-AKI that avoids the unintended adverse effects of a pan-HDAC inhibitor.


2018 ◽  
Vol 315 (6) ◽  
pp. F1720-F1731 ◽  
Author(s):  
Lung-Chih Li ◽  
Jenq-Lin Yang ◽  
Wen-Chin Lee ◽  
Jin-Bor Chen ◽  
Chien-Te Lee ◽  
...  

High levels of serum free fatty acids (FFAs) and proteinuria have been implicated in the pathogenesis of obesity-related nephropathy. CD36, a class B scavenger receptor, is highly expressed in the renal proximal tubules and mediates FFA uptake. It is not clear whether FFA- and proteinuria-mediated CD36 activation coordinates NLRP3 inflammasomes to induce renal tubular injury and inflammation. In this study, we investigated the roles of CD36 and NLRP3 inflammasomes in FFA-induced renal injury in high-fat diet (HFD)-induced obesity. HFD-fed C57BL/6 mice and palmitate-treated HK2 renal tubular cells were used as in vivo and in vitro models. Immunohistochemical staining showed that CD36, IL-1β, and IL-18 levels increased progressively in the kidneys of HFD-fed mice. Sulfo- N-succinimidyl oleate (SSO), a CD36 inhibitor, attenuated the HFD-induced upregulation of NLRP3, IL-1β, and IL-18 and suppressed the colocalization of NLRP3 and ASC in renal tubular cells. In vitro, SSO abolished the palmitate-induced activation of IL-1β, IL-18, and caspase-1 in HK2 proximal tubular cells. Furthermore, treatment with SSO and the knockdown of caspase-1 expression by siRNA both inhibited palmitate-induced cell death and apoptosis in HK2 cells. Collectively, palmitate causes renal tubular inflammation, cell death, and apoptosis via the CD36/NLRP3/caspase-1 axis, which may explain, at least in part, the mechanism underlying FFA-related renal tubular injury. The blockade of CD36-induced cellular processes is therefore a promising strategy for treating obesity-related nephropathy.


Sign in / Sign up

Export Citation Format

Share Document