scholarly journals DR-Net: A Novel Generative Adversarial Network for Single Image Deraining

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Chen Li ◽  
Yecai Guo ◽  
Qi Liu ◽  
Xiaodong Liu

Blurred vision images caused by rainy weather can negatively influence the performance of outdoor vision systems. Therefore, it is necessary to remove rain streaks from single image. In this work, a multiscale generative adversarial network- (GAN-) based model is presented, called DR-Net, for single image deraining. The proposed architecture includes two subnetworks, i.e., generator subnetwork and discriminator subnetwork. We introduce a multiscale generator subnetwork which contains two convolution branches with different kernel sizes, where the smaller one captures the local rain drops information, and the larger one pays close attention to the spatial information. The discriminator subnetwork acts as a supervision signal to promote the generator subnetwork to generate more quality derained image. It is demonstrated that the proposed method yields in relatively higher performance in comparison to other state-of-the-art deraining models in terms of derained image quality and computing efficiency.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1591 ◽  
Author(s):  
Yi Ren ◽  
Mengzhen Nie ◽  
Shichao Li ◽  
Chuankun Li

Capturing images under rainy days degrades image visual quality and affects analysis tasks, such as object detection and classification. Therefore, image de-raining has attracted a lot of attention in recent years. In this paper, an improved generative adversarial network for single image de-raining is proposed. According to the principles of divide-and-conquer, we divide an image de-raining task into rain locating, rain removing, and detail refining sub-tasks. A multi-stream DenseNet, termed as Rain Estimation Network, is proposed to estimate the rain location map. A Generative Adversarial Network is proposed to remove the rain streaks. A Refinement Network is proposed to refine the details. These three models accomplish rain locating, rain removing, and detail refining sub-tasks, respectively. Experiments on two synthetic datasets and real world images demonstrate that the proposed method outperforms state-of-the-art de-raining studies in both objective and subjective measurements.


2021 ◽  
Vol 11 (15) ◽  
pp. 7034
Author(s):  
Hee-Deok Yang

Artificial intelligence technologies and vision systems are used in various devices, such as automotive navigation systems, object-tracking systems, and intelligent closed-circuit televisions. In particular, outdoor vision systems have been applied across numerous fields of analysis. Despite their widespread use, current systems work well under good weather conditions. They cannot account for inclement conditions, such as rain, fog, mist, and snow. Images captured under inclement conditions degrade the performance of vision systems. Vision systems need to detect, recognize, and remove noise because of rain, snow, and mist to boost the performance of the algorithms employed in image processing. Several studies have targeted the removal of noise resulting from inclement conditions. We focused on eliminating the effects of raindrops on images captured with outdoor vision systems in which the camera was exposed to rain. An attentive generative adversarial network (ATTGAN) was used to remove raindrops from the images. This network was composed of two parts: an attentive-recurrent network and a contextual autoencoder. The ATTGAN generated an attention map to detect rain droplets. A de-rained image was generated by increasing the number of attentive-recurrent network layers. We increased the number of visual attentive-recurrent network layers in order to prevent gradient sparsity so that the entire generation was more stable against the network without preventing the network from converging. The experimental results confirmed that the extended ATTGAN could effectively remove various types of raindrops from images.


Author(s):  
Wenchao Du ◽  
Hu Chen ◽  
Hongyu Yang ◽  
Yi Zhang

AbstractGenerative adversarial network (GAN) has been applied for low-dose CT images to predict normal-dose CT images. However, the undesired artifacts and details bring uncertainty to the clinical diagnosis. In order to improve the visual quality while suppressing the noise, in this paper, we mainly studied the two key components of deep learning based low-dose CT (LDCT) restoration models—network architecture and adversarial loss, and proposed a disentangled noise suppression method based on GAN (DNSGAN) for LDCT. Specifically, a generator network, which contains the noise suppression and structure recovery modules, is proposed. Furthermore, a multi-scaled relativistic adversarial loss is introduced to preserve the finer structures of generated images. Experiments on simulated and real LDCT datasets show that the proposed method can effectively remove noise while recovering finer details and provide better visual perception than other state-of-the-art methods.


2021 ◽  
Vol 12 (6) ◽  
pp. 1-20
Author(s):  
Fayaz Ali Dharejo ◽  
Farah Deeba ◽  
Yuanchun Zhou ◽  
Bhagwan Das ◽  
Munsif Ali Jatoi ◽  
...  

Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from a remotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks (GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR) . However, the generated image still suffers from undesirable artifacts such as the absence of texture-feature representation and high-frequency information. We propose a frequency domain-based spatio-temporal remote sensing single image super-resolution technique to reconstruct the HR image combined with generative adversarial networks (GANs) on various frequency bands (TWIST-GAN). We have introduced a new method incorporating Wavelet Transform (WT) characteristics and transferred generative adversarial network. The LR image has been split into various frequency bands by using the WT, whereas the transfer generative adversarial network predicts high-frequency components via a proposed architecture. Finally, the inverse transfer of wavelets produces a reconstructed image with super-resolution. The model is first trained on an external DIV2 K dataset and validated with the UC Merced Landsat remote sensing dataset and Set14 with each image size of 256 × 256. Following that, transferred GANs are used to process spatio-temporal remote sensing images in order to minimize computation cost differences and improve texture information. The findings are compared qualitatively and qualitatively with the current state-of-art approaches. In addition, we saved about 43% of the GPU memory during training and accelerated the execution of our simplified version by eliminating batch normalization layers.


Author(s):  
Han Xu ◽  
Pengwei Liang ◽  
Wei Yu ◽  
Junjun Jiang ◽  
Jiayi Ma

In this paper, we propose a new end-to-end model, called dual-discriminator conditional generative adversarial network (DDcGAN), for fusing infrared and visible images of different resolutions. Unlike the pixel-level methods and existing deep learning-based methods, the fusion task is accomplished through the adversarial process between a generator and two discriminators, in addition to the specially designed content loss. The generator is trained to generate real-like fused images to fool discriminators. The two discriminators are trained to calculate the JS divergence between the probability distribution of downsampled fused images and infrared images, and the JS divergence between the probability distribution of gradients of fused images and gradients of visible images, respectively. Thus, the fused images can compensate for the features that are not constrained by the single content loss. Consequently, the prominence of thermal targets in the infrared image and the texture details in the visible image can be preserved or even enhanced in the fused image simultaneously. Moreover, by constraining and distinguishing between the downsampled fused image and the low-resolution infrared image, DDcGAN can be preferably applied to the fusion of different resolution images. Qualitative and quantitative experiments on publicly available datasets demonstrate the superiority of our method over the state-of-the-art.


Sign in / Sign up

Export Citation Format

Share Document