scholarly journals Radial Flow in a Multiphase Transport Model at FAIR Energies

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Soumya Sarkar ◽  
Provash Mali ◽  
Somnath Ghosh ◽  
Amitabha Mukhopadhyay

Azimuthal distributions of radial velocities of charged hadrons produced in nucleus-nucleus (AB) collisions are compared with the corresponding azimuthal distribution of charged hadron multiplicity in the framework of a multiphase transport (AMPT) model at two different collision energies. The mean radial velocity seems to be a good probe for studying radial expansion. While the anisotropic parts of the distributions indicate a kind of collective nature in the radial expansion of the intermediate “fireball,” their isotropic parts characterize a thermal motion. The present investigation is carried out keeping the upcoming Compressed Baryonic Matter (CBM) experiment to be held at the Facility for Antiproton and Ion Research (FAIR) in mind. As far as high-energy heavy-ion interactions are concerned, CBM will supplement the Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) experiments. In this context our simulation results at high baryochemical potential would be interesting, when scrutinized from the perspective of an almost baryon-free environment achieved at RHIC and LHC.

Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 61 ◽  
Author(s):  
Georg Wolschin

The rapid thermalization of quarks and gluons in the initial stages of relativistic heavy-ion collisions is treated using analytic solutions of a nonlinear diffusion equation with schematic initial conditions, and for gluons with boundary conditions at the singularity. On a similarly short time scale of t ≤ 1 fm/c, the stopping of baryons is accounted for through a QCD-inspired approach based on the parton distribution functions of valence quarks, and gluons. Charged-hadron production is considered phenomenologically using a linear relativistic diffusion model with two fragmentation sources, and a central gluonic source that rises with ln 3 ( s N N ) . The limiting-fragmentation conjecture that agrees with data at energies reached at the Relativistic Heavy-Ion Collider (RHIC) is found to be consistent with Large Hadron Collider (LHC) data for Pb-Pb at s N N = 2.76 and 5.02 TeV. Quarkonia are used as hard probes for the properties of the quark-gluon plasma (QGP) through a comparison of theoretical predictions with recent CMS, ALICE and LHCb data for Pb-Pb and p-Pb collisions.


2020 ◽  
Vol 70 (1) ◽  
pp. 293-321 ◽  
Author(s):  
Wei Li ◽  
Gang Wang

The interplay of quantum anomalies with strong magnetic fields and vorticity in chiral systems could lead to novel transport phenomena, such as the chiral magnetic effect (CME), the chiral magnetic wave (CMW), and the chiral vortical effect (CVE). In high-energy nuclear collisions, these chiral effects may survive the expansion of a quark–gluon plasma fireball and be detected in experiments. The experimental searches for the CME, the CMW, and the CVE have aroused extensive interest over the past couple of decades. The main goal of this article is to review the latest experimental progress in the search for these novel chiral transport phenomena at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. Future programs to help reduce uncertainties and facilitate the interpretation of the data are also discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Rui-Fang Si ◽  
Hui-Ling Li ◽  
Fu-Hu Liu

The experimental (simulated) transverse momentum spectra of negatively charged pions produced at midrapidity in central nucleus-nucleus collisions at the Heavy-Ion Synchrotron (SIS), Relativistic Heavy-Ion Collider (RHIC), and Large Hadron Collider (LHC) energies obtained by different collaborations are selected by us to investigate, where a few simulated data are taken from the results of FOPI Collaboration which uses the IQMD transport code based on Quantum Molecular Dynamics. A two-component standard distribution and the Tsallis form of standard distribution are used to fit these data in the framework of a multisource thermal model. The excitation functions of main parameters in the two distributions are analyzed. In particular, the effective temperatures extracted from the two-component standard distribution and the Tsallis form of standard distribution are obtained, and the relation between the two types of effective temperatures is studied.


2018 ◽  
Vol 172 ◽  
pp. 05010 ◽  
Author(s):  
Christine Nattrass

The Quark Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. Hard partons produced early in the collision fragment and hadronize into a collimated spray of particles called a jet. The partons lose energy as they traverse the medium, a process called jet quenching. Most of the lost energy is still correlated with the parent parton, contributing to particle production at larger angles and lower momenta relative to the parent parton than in proton-proton collisions. This partonic energy loss can be measured through several observables, each of which give different insights into the degree and mechanism of energy loss. The measurements to date are summarized and the path forward is discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Fu-Hu Liu ◽  
Ya-Hui Chen ◽  
Hua-Rong Wei ◽  
Bao-Chun Li

Transverse momentum distributions of final-state particles produced in soft process in proton-proton (pp) and nucleus-nucleus (AA) collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies are studied by using a multisource thermal model. Each source in the model is treated as a relativistic and quantum ideal gas. Because the quantum effect can be neglected in investigation on the transverse momentum distribution in high energy collisions, we consider only the relativistic effect. The concerned distribution is finally described by the Boltzmann or two-component Boltzmann distribution. Our modeling results are in agreement with available experimental data.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Muhammad Waqas ◽  
Fu-Hu Liu ◽  
Zafar Wazir

Centrality-dependent double-differential transverse momentum spectra of negatively charged particles (π−, K−, and p¯) at the mid(pseudo)rapidity interval in nuclear collisions are analyzed by the standard distribution in terms of multicomponent. The experimental data measured in gold-gold (Au-Au) collisions by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC) and in lead-lead (Pb-Pb) collisions by the ALICE Collaboration at the Large Hadron Collider (LHC) are studied. The effective temperature, initial temperature, kinetic freeze-out temperature, transverse flow velocity, and kinetic freeze-out volume are extracted from the fitting to transverse momentum spectra. We observed that the mentioned five quantities increase with the increase of event centrality due to the fact that the average transverse momentum increases with the increase of event centrality. This renders that larger momentum (energy) transfer and further multiple scattering had happened in central centrality.


Author(s):  
Debasish Das

A strongly coupled Quark–Gluon Plasma (sQGP) is created in the high-energy heavy-ion collisions at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC). Our present understanding of sQGP as a very good liquid with astonishingly low viscosity is reviewed. With the arrival of the interesting results from LHC in high-energy [Formula: see text] and [Formula: see text], a new endeavor to characterize the transition from these small systems to heavy ions [Formula: see text] is now in place, since even the small systems showed prominent similarities to heavy ions in the rising multiplicity domains. An outlook of future possibilities for better measurements is also made at the end of this brief review.


2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Ye-Yin Zhao ◽  
Ya-Hui Chen ◽  
Ya-Qin Gao ◽  
Fu-Hu Liu

The inclusive particle productions in proton-proton (pp) and deuton-gold (d+Au) collisions at forward rapidity at the Relativistic Heavy Ion Collider (RHIC) energy are studied in the framework of the color glass condensate (CGC) theory by using two different initial conditions: AAMQS (Albacete-Armesto-Milhano-Quiroga-Salgado) and quartic action. Then, the results obtained by the two different initial conditions in illustrating the effect of valence color charges in high-energy proton-nucleus (pA) collisions at forward energy are compared. Meanwhile, the inclusive particle productions inpAcollisions at forward rapidity at the Large Hadron Collider (LHC) energies are predicted. The main dynamical input in our calculations is the use of solutions of the running coupling Balitsky-Kovchegov equation tested in electron-proton (ep) collision data. Particle production is computed via the hybrid formalisms to obtain spectra and yields. These baseline predictions are useful for testing the current understanding of the dynamics of very strong color fields against the upcoming LHC data.


Sign in / Sign up

Export Citation Format

Share Document