scholarly journals Distributed Consensus Design for a Class of Uncertain Linear Multiagent Systems under Unbalanced Randomly Switching Directed Topologies

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Dinh Hoa Nguyen

This paper proposes a novel approach to design fully distributed consensus controllers for heterogeneous linear Multiagent Systems subjected to randomly switching directed topologies and model uncertainties. The appealing features of this approach are as follows. First, it uses the mildest assumption for the randomly switching topologies that the union of switched graphs has a spanning tree. Second, the consensus is achieved under a class of state multiplicative uncertainties. Moreover, the proposed consensus controllers are low-rank and have nonconservative coupling strengths. Finally, a numerical example is presented to illustrate the effectiveness of the proposed theoretical approach.

2018 ◽  
Vol 56 (3) ◽  
pp. 2189-2217 ◽  
Author(s):  
Zhiyong Yu ◽  
Da Huang ◽  
Haijun Jiang ◽  
Cheng Hu ◽  
Wenwu Yu

2020 ◽  
Vol 34 (05) ◽  
pp. 8204-8211
Author(s):  
Jian Li ◽  
Xing Wang ◽  
Baosong Yang ◽  
Shuming Shi ◽  
Michael R. Lyu ◽  
...  

Recent NLP studies reveal that substantial linguistic information can be attributed to single neurons, i.e., individual dimensions of the representation vectors. We hypothesize that modeling strong interactions among neurons helps to better capture complex information by composing the linguistic properties embedded in individual neurons. Starting from this intuition, we propose a novel approach to compose representations learned by different components in neural machine translation (e.g., multi-layer networks or multi-head attention), based on modeling strong interactions among neurons in the representation vectors. Specifically, we leverage bilinear pooling to model pairwise multiplicative interactions among individual neurons, and a low-rank approximation to make the model computationally feasible. We further propose extended bilinear pooling to incorporate first-order representations. Experiments on WMT14 English⇒German and English⇒French translation tasks show that our model consistently improves performances over the SOTA Transformer baseline. Further analyses demonstrate that our approach indeed captures more syntactic and semantic information as expected.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050240
Author(s):  
Xiao-Wen Zhao ◽  
Guangsong Han ◽  
Qiang Lai ◽  
Dandan Yue

The multiconsensus problem of first-order multiagent systems with directed topologies is studied. A novel consensus problem is introduced in multiagent systems — multiconsensus. The states of multiple agents in each subnetwork asymptotically converge to an individual consistent value in the presence of information exchanges among subnetworks. Linear multiconsensus protocols are proposed to solve the multiconsensus problem, and the matrix corresponding to the protocol is designed. Necessary and sufficient conditions are derived based on matrix theory, under which the stationary multiconsensus and dynamic multiconsensus can be reached. Simulations are provided to demonstrate the effectiveness of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Guoguang Wen ◽  
Yongguang Yu ◽  
Zhaoxia Peng ◽  
Ahmed Rahmani

This paper mainly addresses the distributed consensus tracking problem for second-order nonlinear multiagent systems with a specified reference trajectory. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple communication protocol relying only on the position and velocity information of its neighbors. The consensus reference is taken as a virtual leader, whose output is only its position and velocity information that is available to only a subset of a group of followers. To achieve consensus tracking, a class of nonsmooth control protocols is proposed which reply on the relative information among the neighboring agents. Then some corresponding sufficient conditions are derived. It is shown that if the communication graph associated with the virtual leader and followers is connected at each time instant, the consensus can be achieved at least globally exponentially with the proposed protocol. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory. Finally, numerical examples are presented to illustrate the theoretical analysis.


2015 ◽  
Vol 27 (3) ◽  
pp. 338-356 ◽  
Author(s):  
G. ESPEJO ◽  
G. L'HUILLIER ◽  
R. WEBER

Recently, many security-related problems have gained increasing attention from a quantitative perspective. In this paper, we propose a game-theoretical approach to model the interaction between police forces and delinquents in public places. In the well-known Stackelberg game, a leader is faced with only one follower. However, in our application, the police are simultaneously faced with many offenders, who may be organized or act independently of each other. This application motivates the development of two games: a classical leader-follower interaction between police and organized criminals on the one hand and a novel approach between the leader and selfishly acting offenders on the other. It is of special interest that the effect of crime displacement under police surveillance be anticipated by the proposed models. Results using data from a simulated environment emphasise how these models can provide decision support for policing outperforming traditional strategies.


Sign in / Sign up

Export Citation Format

Share Document