scholarly journals A Consistent Discrete Version of a Nonautonomous SIRVS Model

2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Joaquim Mateus ◽  
César M. Silva ◽  
S. Vaz

A family of discrete nonautonomous SIRVS models with general incidence is obtained from a continuous family of models by applying Mickens nonstandard discretization method. Conditions for the permanence and extinction of the disease and the stability of disease-free solutions are determined. Concerning extinction and persistence, the consistency of those discrete models with the corresponding continuous model is discussed: if the time step is sufficiently small, when we have extinction (permanence) for the continuous model, we also have extinction (permanence) for the corresponding discrete model. Some numerical simulations are carried out to compare the different possible discretizations of our continuous model using real data.

2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2 epidemic.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2epidemic.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jinhu Xu ◽  
Yan Geng

In this paper, a discrete-time model has been proposed by applying nonstandard finite difference (NSFD) scheme to solve a delayed viral infection model with immune response and general nonlinear incidence. It is shown that the discrete model has equilibria which are exactly the same as those of the original continuous model. Using discrete-time analogue of Lyapunov functionals, the global asymptotic stability of the equilibria of the discrete model is fully determined by the basic reproduction number of the virus and immune response, R0 and R1, with no restriction on the time step size, which implies that the NSFD scheme preserves the qualitative dynamics of the corresponding continuous model.


CAUCHY ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Trija Fayeldi

The aim of this paper is to is to generalize the SIR model with horizontal and vertical transmission. In this paper, we develop the discrete version of the model. We use Euler method to approximate numerical solution of the model. We found two equilibrium points, that is disease free and endemic equilibrium points. The existence of these points depend on basic reproduction number <em>R</em><sub>0</sub>. We found that if <em>R</em><sub>0</sub> <span style="text-decoration-line: underline;">&lt;</span> 1 then only disease free equilibrium points exists, while both points exists when <em>R</em><sub>0</sub> &gt; 1. We also found that the stability of these equilibrium points depend on the value of step-size <em>h</em>. Some numerical experiments were presented as illustration.


Author(s):  
DINGXIN YANG ◽  
ZHENG HU

Numerical simulation is the generally used method for studying stochastic resonance (SR), which is a kind of non-linear phenomenon that usually occurs in non-linear bistable systems. It has been found that the input signal needs to be over-sampled during the numerical simulation of SR. In this paper we provide an explanation of this phenomenon based on a stability analysis of the bistable system. We begin by studying the stability of a discrete model of a bistable system in numerical simulations. We then give a theoretical derivation of the stability conditions for the simulation model with different parameters, and carry out numerical experiments to show that the results coincide with the predictions of the theory. We explain why the input signal needs to be over-sampled in the simulation and provides guidelines for the choice of system parameters for the bistable system and the sampling time step in the numerical simulation of SR. Finally, we present the results of simulations showing an example of SR occurring in a bistable system and an example of weak periodic signal detection when it is processed by a bistable system.


2021 ◽  
Vol 19 (1) ◽  
pp. 115-133
Author(s):  
Marcin Choiński ◽  
◽  
Mariusz Bodzioch ◽  
Urszula Foryś ◽  
◽  
...  

<abstract><p>In this paper we introduce and analyze a non-standard discretized SIS epidemic model for a homogeneous population. The presented model is a discrete version of the continuous model known from literature and used by us for building a model for a heterogeneous population. Firstly, we discuss basic properties of the discrete system. In particular, boundedness of variables and positivity of solutions of the system are investigated. Then we focus on stability of stationary states. Results for the disease-free stationary state are depicted with the use of a basic reproduction number computed for the system. For this state we also manage to prove its global stability for a given condition. It transpires that the behavior of the disease-free state is the same as its behavior in the analogous continuous system. In case of the endemic stationary state, however, the results are presented with respect to a step size of discretization. Local stability of this state is guaranteed for a sufficiently small critical value of the step size. We also conduct numerical simulations confirming theoretical results about boundedness of variables and global stability of the disease-free state of the analyzed system. Furthermore, the simulations ascertain a possibility of appearance of Neimark-Sacker bifurcation for the endemic state. As a bifurcation parameter the step size of discretization is chosen. The simulations suggest the appearance of a supercritical bifurcation.</p></abstract>


2019 ◽  
Vol XVI (2) ◽  
pp. 1-11
Author(s):  
Farrukh Jamal ◽  
Hesham Mohammed Reyad ◽  
Soha Othman Ahmed ◽  
Muhammad Akbar Ali Shah ◽  
Emrah Altun

A new three-parameter continuous model called the exponentiated half-logistic Lomax distribution is introduced in this paper. Basic mathematical properties for the proposed model were investigated which include raw and incomplete moments, skewness, kurtosis, generating functions, Rényi entropy, Lorenz, Bonferroni and Zenga curves, probability weighted moment, stress strength model, order statistics, and record statistics. The model parameters were estimated by using the maximum likelihood criterion and the behaviours of these estimates were examined by conducting a simulation study. The applicability of the new model is illustrated by applying it on a real data set.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Haifa Bin Jebreen ◽  
Fairouz Tchier

Herein, an efficient algorithm is proposed to solve a one-dimensional hyperbolic partial differential equation. To reach an approximate solution, we employ the θ-weighted scheme to discretize the time interval into a finite number of time steps. In each step, we have a linear ordinary differential equation. Applying the Galerkin method based on interpolating scaling functions, we can solve this ODE. Therefore, in each time step, the solution can be found as a continuous function. Stability, consistency, and convergence of the proposed method are investigated. Several numerical examples are devoted to show the accuracy and efficiency of the method and guarantee the validity of the stability, consistency, and convergence analysis.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feifan Zhang ◽  
Wenjiao Zhou ◽  
Lei Yao ◽  
Xuanwen Wu ◽  
Huayong Zhang

In this research, a continuous nutrient-phytoplankton model with time delay and Michaelis–Menten functional response is discretized to a spatiotemporal discrete model. Around the homogeneous steady state of the discrete model, Neimark–Sacker bifurcation and Turing bifurcation analysis are investigated. Based on the bifurcation analysis, numerical simulations are carried out on the formation of spatiotemporal patterns. Simulation results show that the diffusion of phytoplankton and nutrients can induce the formation of Turing-like patterns, while time delay can also induce the formation of cloud-like pattern by Neimark–Sacker bifurcation. Compared with the results generated by the continuous model, more types of patterns are obtained and are compared with real observed patterns.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Sibaliwe Maku Vyambwera ◽  
Peter Witbooi

We propose a stochastic compartmental model for the population dynamics of tuberculosis. The model is applicable to crowded environments such as for people in high density camps or in prisons. We start off with a known ordinary differential equation model, and we impose stochastic perturbation. We prove the existence and uniqueness of positive solutions of a stochastic model. We introduce an invariant generalizing the basic reproduction number and prove the stability of the disease-free equilibrium when it is below unity or slightly higher than unity and the perturbation is small. Our main theorem implies that the stochastic perturbation enhances stability of the disease-free equilibrium of the underlying deterministic model. Finally, we perform some simulations to illustrate the analytical findings and the utility of the model.


Sign in / Sign up

Export Citation Format

Share Document