scholarly journals Experimental Study on Variable-Amplitude Fatigue of Welded Cross Plate-Hollow Sphere Joints in Grid Structures

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jin-Feng Jiao ◽  
Hong-Gang Lei ◽  
Y. Frank Chen

The fatigue stress amplitude of the welded cross plate-hollow sphere joint (WCPHSJ) in a grid structure varies due to the random loading produced by suspending cranes. A total of 14 specimens considering three different types of WCPHSJs were prepared and tested using a specially designed test rig. Four typical loading conditions, “low-high,” “high-low,” “low-high-low,” and “high-low-high,” were first considered in the tests to investigate the fatigue behavior under variable load amplitudes, followed by metallographic analyses. The experimental and metallographic analysis results provide a fundamental understanding on the fatigue fracture form and fatigue mechanism of WCPHSJs. Based on the available data from constant-amplitude fatigue tests, the variable-amplitude fatigue life of the three types of WCPHSJs was estimated using the Miner rule and Corten-Dolan theory. Since both accumulative damage theories yield virtually same damaging results, the Miner rule is hence suggested to estimate the fatigue life of WCPHSJs.

1995 ◽  
Vol 117 (3) ◽  
pp. 293-298 ◽  
Author(s):  
R. I. Stephens ◽  
C. D. Schrader ◽  
K. B. Lease

The objective of this research was to obtain and compare constant and variable amplitude fatigue behavior of AZ91E-T6 cast magnesium alloy in both an air and 3.5 percent NaCl aqueous corrosive environment. An additional objective was to determine if commonly used models that describe fatigue behavior and fatigue life are applicable to this material and test environment. Fatigue tests included constant amplitude strain-controlled low cycle fatigue with strain ratio, R, equal to 0, −1 and −2, Region II constant amplitude fatigue crack growth with load ratio, R, equal to 0.05 and 0.5 and variable amplitude fatigue tests using keyhole notched specimens. In all fatigue tests, the corrosion environment was significantly detrimental relative to the air environment. Mean strains influenced fatigue life only if accompanied by significant mean stress. The Morrow and Smith, Watson, and Topper mean stress models provided both accurate and inaccurate fatigue life calculations. Likewise, variable amplitude fatigue life calculations using the local strain approach and based upon the formation ofal mm crack at the keyhole notch were both accurate and fairly inaccurate depending on the specific model used.


2007 ◽  
Vol 567-568 ◽  
pp. 51-56
Author(s):  
F. Walther ◽  
Dietmar Eifler

Mechanical stress-strain hysteresis, temperature and electrical resistance measurements were performed for the microstructure-related characterization of the fatigue behavior and for the fatigue life calculation of metals. The proceeding fatigue damage was evaluated using the change of the load-free electrical resistance, which is strongly influenced by the defect density of the individual material state. A new test procedure was applied for the fatigue assessment under random loading on the basis of cyclic deformation curves, similar to single step loading. A physically based fatigue life calculation “PHYBAL” was developed, which requires only three fatigue tests for the rapid and nevertheless precise calculation of S-N (Woehler) and fatigue life curves.


PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Jörn Remitz ◽  
Martin Empelmann

Pretensioned concrete beams are widely used as bridge girders for simply supported bridges. Understanding the fatigue behavior of such beams is very important for design and construction to prevent fatigue failure. The fatigue behavior of pretensioned concrete beams is mainly influenced by the fatigue of the prestressing strands. The evaluation of previous test results from the literature indicated a reduced fatigue life in the long-life region compared with current design methods and specifications. Therefore, nine additional high-cycle fatigue tests were conducted on pretensioned concrete beams with strand stress ranges of about 100 MPa (14.5 ksi). The test results confirmed that current design methods and specifications overestimate the fatigue life of embedded strands in pretensioned concrete beams.


Author(s):  
Jussi P. Solin

Strain controlled constant and variable amplitude fatigue tests for 316NG and Titanium stabilized stainless steels in low oxygen PWR waters were performed. The stabilized steel has been plant aged for 100 000 hours. Constant amplitude test results at 0,01 Hz sinusoidal straining comply with predicted lives according to the Fen approach for both materials. Spectrum straining both in air and in environment caused predicted life reduction factors (about 3) for the stabilized steel, but for the 316NG steel spectrum straining in environment resulted to a larger reduction in life.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


2014 ◽  
Vol 891-892 ◽  
pp. 1451-1456
Author(s):  
Elena Bassoli ◽  
Andrea Baldini ◽  
Andrea Gatto ◽  
Antonio Strozzi ◽  
Lucia Denti

Difficult-to cut-materials are associated with premature tool failure, most likely in the case of complex geometries and this shapes. However, Nickel-based alloys are commonly used in high-temperature and aerospace applications, where thin deep holes are often required. Then, the only viable manufacturing solution relies on non-contact processes, like electrodischarge (ED) drilling. Morphology of ED machined surfaces is significantly different than obtained by metal-cutting operation and is known to jeopardize fatigue strength, but the extent needs to be gauged and related to the process parameters. Aim of the paper is to study the effect of holes (0.8 mm diameter, aspect ratio 10) produced by ED drilling on the fatigue life of Inconel 718. Rotating bending fatigue tests are carried out on specimens drilled under two ED setups, as well as with a traditional cutting tool. Specimens free from holes are fatigued under the same conditions for comparison. Based on previous studies, extremal ED parameters are selected, giving best surface finish versus highest productivity. S-N curves show that the ED process causes a decrease of the fatigue resistance with respect to traditional drilling, whereas the effect of different ED setups is negligible. Maximum productivity can thus be pursued with no threat to fatigue performance. The fatigue limit variation is quantified by using the superposition effect principle: ED drilling causes an increase of the stress concentration factor around 25% if compared to traditional drilling. The macroscopic fatigue behavior is integrated with a study of the effects of the different drilling processes in the micro-scale, by means of a microstructural and fractographic analysis.


Author(s):  
Melody Mojib ◽  
Rishi Pahuja ◽  
M. Ramulu ◽  
Dwayne Arola

Abstract Metal Additive Manufacturing (AM) has become a popular method for producing complex and unique geometries, especially gaining traction in the aerospace and medical industries. With the increase in adoption of AM and the high cost of powder, it is critical to understand the effects of powder recycling on part performance to move towards material qualification and certification of affordable printed components. Due to the limitations of the Electron Beam Melting (EBM) process, current as-printed components are susceptible to failure at limits far below wrought metals and further understanding of the material properties and fatigue life is required. In this study, a high strength Titanium alloy, Ti-6Al-4V, is recycled over time and used to print fatigue specimens using the EBM process. Uniaxial High Cycle Fatigue tests have been performed on as-printed and polished cylindrical specimens and the locations of crack initiation and propagation have been determined through the use of a scanning electron microscope. This investigation has shown that the rough surface exterior is far more detrimental to performance life than the powder degradation occurring due to powder reuse. In addition, the effects of the rough surface exterior as a stress concentration is evaluated using the Arola-Ramulu. The following is a preliminary study of the effects powder recycling and surface treatments on EBM Ti-6Al4V fatigue life.


2016 ◽  
Vol 35 (3) ◽  
pp. 225-234 ◽  
Author(s):  
Hasan Kaya ◽  
Mehmet Uçar

AbstractIn this study, the effects of equal channel angular pressing (ECAP) on high-cycle fatigue and fatigue surface morphology of AA7075 have been investigated at a constant temperature (483 K) and the “C” route for four passes at ECAP process. ECAPed and as-received specimens were tested by four-point bending fatigue device. Fatigue tests were carried out by using 100, 120 and 140 MPa strength values. ECAPed specimens were characterized for each pass with optical microscope (OM), scanning electron microscope (SEM), energy-dispersive spectroscope (EDS), transmission electron microscope (TEM), selected area electron diffraction (SAED) and hardness measurements. Fracture surfaces of the specimens were also characterized with SEM. The results show that the highest hardness values (137 HV) and the best fatigue life (5.4 × 107for 100 MPa) were measured in ECAPed four-pass sample. For this reason hardness values and fatigue life were increased with increasing number of severe plastic deformation (SPD) process.


Sign in / Sign up

Export Citation Format

Share Document