scholarly journals A Context-Aware Location Differential Perturbation Scheme for Privacy-Aware Users in Mobile Environment

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xuejun Zhang ◽  
Haiyan Huang ◽  
Shan Huang ◽  
Qian Chen ◽  
Tao Ju ◽  
...  

The proliferation of location-based services, representative services for the mobile networks, has posed a serious threat to users’ privacy. In the literature, several privacy mechanisms have been proposed to preserve location privacy. Location obfuscation enforced using cloaking region is a widely used technique to achieve location privacy. However, it requires a trusted third-party (TTP) and cannot sufficiently resist various inference attacks based on background information and thus is vulnerable to location privacy breach. In this paper, we propose a context-aware location privacy-preserving solution with differential perturbations, which can enhance the user’s location privacy without requiring a TTP. Our scheme utilizes the modified Hilbert curve to project every 2-d location of the user in the considered map to 1-d space and randomly generates the reasonable perturbation by adding Laplace noise via differential privacy. In order to solve the resource limitation of mobile devices, we use a quad-tree based scheme to transform and store the user context information as bit stream which achieves the high compression ratio and supports efficient retrieval. Security analysis shows that our proposed scheme can effectively preserve the location privacy. Experimental evaluation shows that our scheme retrieval accuracy is increased by an average of 15.4% compared with the scheme using standard Hilbert curve. Our scheme can provide strong privacy guarantees with a bounded accuracy loss while improving retrieval accuracy.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jie Wang ◽  
Feng Wang ◽  
Hongtao Li

Location-based services (LBS) applications provide convenience for people’s life and work, but the collection of location information may expose users’ privacy. Since these collected data contain much private information about users, a privacy protection scheme for location information is an impending need. In this paper, a protection scheme DPL-Hc is proposed. Firstly, the users’ location on the map is mapped into one-dimensional space by using Hilbert curve mapping technology. Then, the Laplace noise is added to the location information of one-dimensional space for perturbation, which considers more than 70% of the nonlocation information of users; meanwhile, the disturbance effect is achieved by adding noise. Finally, the disturbed location is submitted to the service provider as the users’ real location to protect the users’ location privacy. Theoretical analysis and simulation results show that the proposed scheme can protect the users’ location privacy without the trusted third party effectively. It has advantages in data availability, the degree of privacy protection, and the generation time of anonymous data sets, basically achieving the balance between privacy protection and service quality.


Author(s):  
Ajaysinh Devendrasinh Rathod ◽  
Saurabh Shah ◽  
Vivaksha J. Jariwala

In recent trends, growth of location based services have been increased due to the large usage of cell phones, personal digital assistant and other devices like location based navigation, emergency services, location based social networking, location based advertisement, etc. Users are provided with important information based on location to the service provider that results the compromise with their personal information like user’s identity, location privacy etc. To achieve location privacy of the user, cryptographic technique is one of the best technique which gives assurance. Location based services are classified as Trusted Third Party (TTP) & without Trusted Third Party that uses cryptographic approaches. TTP free is one of the prominent approach in which it uses peer-to-peer model. In this approach, important users mutually connect with each other to form a network to work without the use of any person/server. There are many existing approaches in literature for privacy preserving location based services, but their solutions are at high cost or not supporting scalability.  In this paper, our aim is to propose an approach along with algorithms that will help the location based services (LBS) users to provide location privacy with minimum cost and improve scalability.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Madhuri Siddula ◽  
Yingshu Li ◽  
Xiuzhen Cheng ◽  
Zhi Tian ◽  
Zhipeng Cai

While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k-anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods.


Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 458
Author(s):  
Nanlan Jiang ◽  
Sai Yang ◽  
Pingping Xu

Preserving the location privacy of users in Mobile Ad hoc Networks (MANETs) is a significant challenge for location information. Most of the conventional Location Privacy Preservation (LPP) methods protect the privacy of the user while sacrificing the capability of retrieval on the server-side, that is, legitimate devices except the user itself cannot retrieve the location in most cases. On the other hand, applications such as geographic routing and location verification require the retrievability of locations on the access point, the base station, or a trusted server. Besides, with the development of networking technology such as caching technology, it is expected that more and more distributed location-based services will be deployed, which results in the risk of leaking location information in the wireless channel. Therefore, preserving location privacy in wireless channels without losing the retrievability of the real location is essential. In this paper, by focusing on the wireless channel, we propose a novel LPP enabled by distance (ranging result), angle, and the idea of spatial cloaking (DSC-LPP) to preserve location privacy in MANETs. DSC-LPP runs without the trusted third party nor the traditional cryptography tools in the line-of-sight environment, and it is suitable for MANETs such as the Internet of Things, even when the communication and computation capabilities of users are limited. Qualitative evaluation indicates that DSC-LPP can reduce the communication overhead when compared with k-anonymity, and the computation overhead of DSC-LPP is limited when compared with conventional cryptography. Meanwhile, the retrievability of DSC-LPP is higher than that of k-anonymity and differential privacy. Simulation results show that with the proper design of spatial divisions and parameters, other legitimate devices in a MANET can correctly retrieve the location of users with a high probability when adopting DSC-LPP.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lu Ou ◽  
Hui Yin ◽  
Zheng Qin ◽  
Sheng Xiao ◽  
Guangyi Yang ◽  
...  

Location-based services (LBSs) are increasingly popular in today’s society. People reveal their location information to LBS providers to obtain personalized services such as map directions, restaurant recommendations, and taxi reservations. Usually, LBS providers offer user privacy protection statement to assure users that their private location information would not be given away. However, many LBSs run on third-party cloud infrastructures. It is challenging to guarantee user location privacy against curious cloud operators while still permitting users to query their own location information data. In this paper, we propose an efficient privacy-preserving cloud-based LBS query scheme for the multiuser setting. We encrypt LBS data and LBS queries with a hybrid encryption mechanism, which can efficiently implement privacy-preserving search over encrypted LBS data and is very suitable for the multiuser setting with secure and effective user enrollment and user revocation. This paper contains security analysis and performance experiments to demonstrate the privacy-preserving properties and efficiency of our proposed scheme.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4651
Author(s):  
Yuanbo Cui ◽  
Fei Gao ◽  
Wenmin Li ◽  
Yijie Shi ◽  
Hua Zhang ◽  
...  

Location-Based Services (LBSs) are playing an increasingly important role in people’s daily activities nowadays. While enjoying the convenience provided by LBSs, users may lose privacy since they report their personal information to the untrusted LBS server. Although many approaches have been proposed to preserve users’ privacy, most of them just focus on the user’s location privacy, but do not consider the query privacy. Moreover, many existing approaches rely heavily on a trusted third-party (TTP) server, which may suffer from a single point of failure. To solve the problems above, in this paper we propose a Cache-Based Privacy-Preserving (CBPP) solution for users in LBSs. Different from the previous approaches, the proposed CBPP solution protects location privacy and query privacy simultaneously, while avoiding the problem of TTP server by having users collaborating with each other in a mobile peer-to-peer (P2P) environment. In the CBPP solution, each user keeps a buffer in his mobile device (e.g., smartphone) to record service data and acts as a micro TTP server. When a user needs LBSs, he sends a query to his neighbors first to seek for an answer. The user only contacts the LBS server when he cannot obtain the required service data from his neighbors. In this way, the user reduces the number of queries sent to the LBS server. We argue that the fewer queries are submitted to the LBS server, the less the user’s privacy is exposed. To users who have to send live queries to the LBS server, we employ the l-diversity, a powerful privacy protection definition that can guarantee the user’s privacy against attackers using background knowledge, to further protect their privacy. Evaluation results show that the proposed CBPP solution can effectively protect users’ location and query privacy with a lower communication cost and better quality of service.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jiangfan Feng ◽  
Yanhong Liu

Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users’ demands in a complicated environment and suggested the feasibility by the experimental results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Weiqi Zhang ◽  
Guisheng Yin ◽  
Yuhai Sha ◽  
Jishen Yang

The rapid development of the Global Positioning System (GPS) devices and location-based services (LBSs) facilitates the collection of huge amounts of personal information for the untrusted/unknown LBS providers. This phenomenon raises serious privacy concerns. However, most of the existing solutions aim at locating interference in the static scenes or in a single timestamp without considering the correlation between location transfer and time of moving users. In this way, the solutions are vulnerable to various inference attacks. Traditional privacy protection methods rely on trusted third-party service providers, but in reality, we are not sure whether the third party is trustable. In this paper, we propose a systematic solution to preserve location information. The protection provides a rigorous privacy guarantee without the assumption of the credibility of the third parties. The user’s historical trajectory information is used as the basis of the hidden Markov model prediction, and the user’s possible prospective location is used as the model output result to protect the user’s trajectory privacy. To formalize the privacy-protecting guarantee, we propose a new definition, L&A-location region, based on k -anonymity and differential privacy. Based on the proposed privacy definition, we design a novel mechanism to provide a privacy protection guarantee for the users’ identity trajectory. We simulate the proposed mechanism based on a dataset collected in real practice. The result of the simulation shows that the proposed algorithm can provide privacy protection to a high standard.


2020 ◽  
Vol 2020 (2) ◽  
pp. 379-396 ◽  
Author(s):  
Ricardo Mendes ◽  
Mariana Cunha ◽  
João P. Vilela

AbstractLocation privacy has became an emerging topic due to the pervasiveness of Location-Based Services (LBSs). When sharing location, a certain degree of privacy can be achieved through the use of Location Privacy-Preserving Mechanisms (LPPMs), in where an obfuscated version of the exact user location is reported instead. However, even obfuscated location reports disclose information which poses a risk to privacy. Based on the formal notion of differential privacy, Geo-indistinguishability has been proposed to design LPPMs that limit the amount of information that is disclosed to a potential adversary observing the reports. While promising, this notion considers reports to be independent from each other, thus discarding the potential threat that arises from exploring the correlation between reports. This assumption might hold for the sporadic release of data, however, there is still no formal nor quantitative boundary between sporadic and continuous reports and thus we argue that the consideration of independence is valid depending on the frequency of reports made by the user. This work intends to fill this research gap through a quantitative evaluation of the impact on the privacy level of Geo-indistinguishability under different frequency of reports. Towards this end, state-of-the-art localization attacks and a tracking attack are implemented against a Geo-indistinguishable LPPM under several values of privacy budget and the privacy level is measured along different frequencies of updates using real mobility data.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ruchika Gupta ◽  
Udai Pratap Rao

The prevalent usage of location based services, where getting any service is solely based on the user’s current location, has raised an extreme concern over location privacy of the user. Generalized approaches dealing with location privacy, referred to as cloaking and obfuscation, are mainly based on a trusted third party, in which all the data remain available at a central server and thus complete knowledge of the query exists at the central node. This is the major limitation of such approaches; on the other hand, in trusted third-party-free framework clients collaborate with each other and freely communicate with the service provider without any third-party involvement. Measuring and evaluating trust among peers is a crucial aspect in trusted third-party-free framework. This paper exploits the merits and mitigating the shortcomings of both of these approaches. We propose a hybrid solution, HYB, to achieve location privacy for the mobile users who use location services frequently. The proposed HYB scheme is based on the collaborative preprocessing of location data and utilizes the benefits of homomorphic encryption technique. Location privacy is achieved at two levels, namely, at the proximity level and at distant level. The proposed HYB solution preserves the user’s location privacy effectively under specific, pull-based, sporadic query scenario.


Sign in / Sign up

Export Citation Format

Share Document