scholarly journals Multiple-Try Simulated Annealing Algorithm for Global Optimization

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Shao ◽  
Guangbao Guo

Simulated annealing is a widely used algorithm for the computation of global optimization problems in computational chemistry and industrial engineering. However, global optimum values cannot always be reached by simulated annealing without a logarithmic cooling schedule. In this study, we propose a new stochastic optimization algorithm, i.e., simulated annealing based on the multiple-try Metropolis method, which combines simulated annealing and the multiple-try Metropolis algorithm. The proposed algorithm functions with a rapidly decreasing schedule, while guaranteeing global optimum values. Simulated and real data experiments including a mixture normal model and nonlinear Bayesian model indicate that the proposed algorithm can significantly outperform other approximated algorithms, including simulated annealing and the quasi-Newton method.

1994 ◽  
Vol 8 (4) ◽  
pp. 571-590 ◽  
Author(s):  
H. Edwin Romeijn ◽  
Robert L. Smith

Simulated annealing is a class of sequential search techniques for solving continuous global optimization problems. In this paper we attempt to help explain the success of simulated annealing for this class of problems by studying an idealized version of this algorithm, which we call adaptive search. The prototypical adaptive search algorithm generates a sequence of improving points drawn conditionally from samples from a corresponding sequence of probability distributions. Under the condition that the sequence of distributions stochastically dominate in objective function value the uniform distribution, we show that the expected number of improving points required to achieve the global optimum within a prespecified error grows at most linearly in the dimension of the problem for a large class of global optimization problems. Moreover, we derive a cooling schedule for simulated annealing, which follows in a natural way from the definition of the adaptive search algorithm.


Author(s):  
Seifedine N. Kadry ◽  
Abdelkhalak El Hami

The present paper focus on the improvement of the efficiency of structural optimization, in typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remain essential. In this paper, a new hybrid simulated annealing algorithm for large scale global optimization problems with constraints is proposed. The authors have developed a stochastic algorithm called SAPSPSA that uses Simulated Annealing algorithm (SA). In addition, the Simultaneous Perturbation Stochastic Approximation method (SPSA) is used to refine the solution. Commonly, structural analysis problems are constrained. For the reason that SPSA method involves penalizing constraints a penalty method is used to design a new method, called Penalty SPSA (PSPSA) method. The combination of both methods (Simulated Annealing algorithm and Penalty Simultaneous Perturbation Stochastic Approximation algorithm) provides a powerful hybrid stochastic optimization method (SAPSPSA), the proposed method is applicable for any problem where the topology of the structure is not fixed. It is simple and capable of handling problems subject to any number of constraints which may not be necessarily linear. Numerical results demonstrate the applicability, accuracy and efficiency of the suggested method for structural optimization. It is found that the best results are obtained by SAPSPSA compared to the results provided by the commercial software ANSYS.


2021 ◽  
pp. 1-17
Author(s):  
Xiaobing Yu ◽  
Zhenjie Liu ◽  
XueJing Wu ◽  
Xuming Wang

Differential evolution (DE) is one of the most effective ways to solve global optimization problems. However, considering the traditional DE has lower search efficiency and easily traps into local optimum, a novel DE variant named hybrid DE and simulated annealing (SA) algorithm for global optimization (HDESA) is proposed in this paper. This algorithm introduces the concept of “ranking” into the mutation operation of DE and adds the idea of SA to the selection operation. The former is to improve the exploitation ability and increase the search efficiency, and the latter is to enhance the exploration ability and prevent the algorithm from trapping into the local optimal state. Therefore, a better balance can be achieved. The experimental results and analysis have shown its better or at least equivalent performance on the exploitation and exploration capability for a set of 24 benchmark functions. It is simple but efficient.


2019 ◽  
Vol 18 (04) ◽  
pp. 527-548
Author(s):  
Arash Zaretalab ◽  
Vahid Hajipour

One of the most practical optimization problems in the reliability field is the redundancy allocation problem (RAP). This problem optimizes the reliability of a system by adding redundant components to subsystems under some constraints. In recent years, various meta-heuristic algorithms applied to find a local or global optimum solution for RAP in which redundancy strategies are chosen. Among these algorithms, simulated annealing algorithm (SA) is a capable one and makes use of a mathematical analogue to the physical annealing process to finding the global optimum. In this paper, we present a new simulated annealing algorithm named knowledge-based simulated annealing (KBSA) to solve RAP for the series-parallel system when the redundancy strategy can be chosen for individual subsystems. In the KBSA algorithm, the SA part searches the solution space to find good solutions and knowledge model saves the knowledge of good solution and feed it back to the algorithm. In this paper, this approach achieves the optimal result for some instances in the literature. In order to evaluate the performance of the proposed algorithm, it is compared with well-known algorithms in the literature for different test problems. Finally, the results illustrate that the proposed algorithm has a good proficiency in obtaining desired results.


2010 ◽  
Vol 446 ◽  
pp. 101-110 ◽  
Author(s):  
W. El Alem ◽  
A. El Hami ◽  
Rachid Ellaia

In structural design optimization, numerical techniques are increasingly used. In typical structural optimization problems there may be many locally minimum configurations. For that reason, the application of a global method, which may escape from the locally minimum points, remain essential. In this paper, a new hybrid simulated annealing algorithm for global optimization with constraints is proposed. We have developed a new algorithm called Adaptive Simulated Annealing algorithm (ASA); ASA is a series of modifications done to the Basic Simulated Annealing algorithm ( BSA) that gives the region containing the global solution of an objective function. In addition, the stochastic method Simultaneous Perturbation Stochastic Approximation (SPSA), for solving unconstrained optimization problems, is used to refine the solution. We also propose Penalty SPSA (PSPSA) for solving constrained optimization problems. The constraints are handled using exterior point penalty functions. The proposed method is applicable for any problem where the topology of the structure is not fixed, it is simple and capable of handling problems subject to any number of nonlinear constraints. Extensive tests on the ASA as a global optimization method are presented, its performance as a viable optimization method is demonstrated by applying it first to a series of benchmark functions with 2 - 30 dimensions and then it is used in structural design to demonstrate its applicability and efficiency. It is found that the best results are obtained by ASA compared to those provided by the commercial software ANSYS.


2020 ◽  
Author(s):  
Alberto Bemporad ◽  
Dario Piga

AbstractThis paper proposes a method for solving optimization problems in which the decision-maker cannot evaluate the objective function, but rather can only express a preference such as “this is better than that” between two candidate decision vectors. The algorithm described in this paper aims at reaching the global optimizer by iteratively proposing the decision maker a new comparison to make, based on actively learning a surrogate of the latent (unknown and perhaps unquantifiable) objective function from past sampled decision vectors and pairwise preferences. A radial-basis function surrogate is fit via linear or quadratic programming, satisfying if possible the preferences expressed by the decision maker on existing samples. The surrogate is used to propose a new sample of the decision vector for comparison with the current best candidate based on two possible criteria: minimize a combination of the surrogate and an inverse weighting distance function to balance between exploitation of the surrogate and exploration of the decision space, or maximize a function related to the probability that the new candidate will be preferred. Compared to active preference learning based on Bayesian optimization, we show that our approach is competitive in that, within the same number of comparisons, it usually approaches the global optimum more closely and is computationally lighter. Applications of the proposed algorithm to solve a set of benchmark global optimization problems, for multi-objective optimization, and for optimal tuning of a cost-sensitive neural network classifier for object recognition from images are described in the paper. MATLAB and a Python implementations of the algorithms described in the paper are available at http://cse.lab.imtlucca.it/~bemporad/glis.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Gai-Ge Wang ◽  
Lihong Guo ◽  
Amir Hossein Gandomi ◽  
Amir Hossein Alavi ◽  
Hong Duan

Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH), for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH) method is proposed for optimization tasks. A new krill selecting (KS) operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA). In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.


Sign in / Sign up

Export Citation Format

Share Document