scholarly journals [18F]ML-10 Imaging for Assessment of Apoptosis Response of Intracranial Tumor Early after Radiosurgery by PET/CT

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Lu Sun ◽  
Kedi Zhou ◽  
Weijun Wang ◽  
Xiaojun Zhang ◽  
Zhongjian Ju ◽  
...  

[18F]ML-10 is a novel apoptosis radiotracer for positron emission tomography (PET). We assess the apoptosis response of intracranial tumor early after CyberKnife (CK) treatment by [18F]ML-10 PET imaging. 29 human subjects (30 lesions), diagnosed with intracranial tumors, underwent CK treatment at 14–24 Gy in 1–3 fractions, had [18F]ML-10 positron emission tomography/computed tomography (PET/CT) before (pre-CK) and 48 hours after (post-CK) CK treatment. Magnetic resonance imaging (MRI) scans were taken before and 8 weeks after CK treatment. Voxel-based analysis was used for the imaging analysis. Heterogeneous changes of apoptosis in tumors before and after treatment were observed on voxel-based analysis of PET images. A positive correlation was observed between the change in radioactivity (X) and subsequent tumor volume (Y) (r=0.862, p<0.05), with a regression equation of Y=1.018∗X−0.016. Malignant tumors tend to be more sensitive to CK treatment, but the treatment outcome is not affected by pre-CK apoptotic status of tumor cells; [18F]ML-10 PET imaging could be taken as an assessment 48 h after CK treatment.

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0127800 ◽  
Author(s):  
Stefanie M. F. Seiler ◽  
Christine Baumgartner ◽  
Johannes Hirschberger ◽  
Ambros J. Beer ◽  
Andreas Brühschwein ◽  
...  

2018 ◽  
Vol 24 (11) ◽  
pp. 1399-1412 ◽  
Author(s):  
Heidi Högel ◽  
Eero Rissanen ◽  
Anna Vuorimaa ◽  
Laura Airas

Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.


2018 ◽  
Vol 17 ◽  
pp. 153601211879572 ◽  
Author(s):  
Ying Xiong ◽  
Dahong Nie ◽  
Shaoyu Liu ◽  
Hui Ma ◽  
Shu Su ◽  
...  

Objective: To investigate the value of 2-(3-[18F]fluoropropyl)-2-methyl-malonic acid ([18F]ML-8) positron emission tomography (PET) imaging of rat pulmonary fibrosis. Methods: Male Sprague-Dawley rats were divided into 2 groups, including pulmonary fibrosis model group and control group. The rat model was established by an intratracheal instillation of bleomycin (BLM). Control rats were treated with saline. Positron emission tomography/computed tomography (CT) with [18F]ML-8 or 18F-fluorodeoxyglucose ([18F]FDG) was performed on 2 groups. After PET/CT imaging, lung tissues were collected for histologic examination. Data were analyzed and comparisons between 2 groups were performed using Student t test. Results: Bleomycin-treated rats showed a higher lung uptake of [18F]ML-8 than control rats ( P < .05). In BLM-treated rats, the lung to muscle relative uptake ratio of [18F]ML-8 was also higher than that of [18F]FDG ( P < .05). Pathological examination showed overproliferation of fibroblasts and deposition of collagen in lungs from BLM-treated rats. Compared to control rats, BLM-treated rats had higher lung hydroxyproline content ( P < .05). Immunofluorescence staining indicated more apoptotic cells in BLM-treated rats than those in control rats. Moreover, the apoptosis rate of lung tissues obtained from BLM-treated rats was higher than that from control rats ( P < .05). Conclusions: 2-(3-[18F]fluoropropyl)-2-methyl-malonic acid PET/CT could be used for noninvasive diagnosis of pulmonary fibrosis in a rat model.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2153 ◽  
Author(s):  
Salvatore Annunziata ◽  
Daniele Antonio Pizzuto ◽  
Giorgio Treglia

A significant number of meta-analyses reporting data on the diagnostic performance of positron emission tomography (PET) in prostate cancer (PCa) is currently available in the literature. In particular, different PET radiopharmaceuticals were used for this purpose. The aim of this review is to summarize information retrieved by published meta-analyses on this topic. The first step included a systematic search of the literature (last search date: June 2020), screening two databases (PubMed/MEDLINE and Cochrane Library). This combination of key words was used: (A) “PET” OR “positron emission tomography” AND (B) “prostate” OR “prostatic” AND (C) meta-analysis. Only meta-analyses on Positron Emission Tomography/Computed Tomography (PET/CT) or Positron Emission Tomography/Magnetic Resonance (PET/MR) in PCa were selected. We have summarized the diagnostic performance of PET imaging in PCa, taking into account 39 meta-analyses published in the literature. Evidence-based data showed the good diagnostic performance of PET/CT with several radiopharmaceuticals, including prostate-specific membrane antigen (PSMA)-targeted agents, radiolabeled choline, fluciclovine, and fluoride in restaging and staging settings. Less evidence-based data were available for PET/MR with different radiotracers. More prospective multicentric studies and cost-effectiveness analyses are warranted.


2019 ◽  
Vol 40 (12) ◽  
pp. 1351-1357
Author(s):  
Jonathan P. Dyke ◽  
Jonathan H. Garfinkel ◽  
Lauren Volpert ◽  
Austin Sanders ◽  
Meghan Newcomer ◽  
...  

Background: Total ankle arthroplasty (TAA) continues to exhibit a relatively high incidence of complications and need for revision surgery compared to knee and hip arthroplasty. One common mode of failure in TAA is talar component subsidence. This may be caused by disruption in the talar blood supply related to the operative technique. The purpose of this study was to quantify changes in talar bone perfusion and turnover before and after TAA with the INBONE II system using 18F-fluoride positron emission tomography / computed tomography (PET/CT). Methods: Nine subjects (5 M/4 F) aged 68.9 ± 8.2 years were enrolled for 18F-fluoride PET/CT imaging before and 3 months after TAA. Regions of interest (ROI) were placed on the postoperative CT images in the body of the talus beneath the talar component and overlaid on the fused static PET images. Standard uptake values (SUVs) along with dynamic K1 (bone blood flow) and ki (bone metabolism or osteoblastic turnover) were calculated. Results: The SUV underneath the talar component compared to that measured at baseline before surgery was 1.93 ± 0.29 preoperatively vs 2.47 ± 0.37 postoperatively ( P > .05). K1 was 0.84 ± 0.16 mL/min/mL preoperatively vs 1.51 ± 0.23 mL/min/mL postoperatively ( P = .026). ki was constant at 0.09 ± 0.03 mL/min/mL preoperatively vs 0.12 ± 0.03 mL/min/mL postoperatively ( P > .05). Conclusion: Our study was the first to link 18F-fluoride PET/CT with pre-post evaluation of total ankle replacements. The study quantified perfusion within the talus beneath the TAA implant supporting the hypothesis that perfusion of the talus remained intact after surgery. Level of Evidence: Level II, prospective cohort study with development of diagnostic criteria.


2011 ◽  
Vol 14 (5) ◽  
pp. 283 ◽  
Author(s):  
Andre Plass ◽  
Maximilian Y. Emmert ◽  
Oliver Gaemperli ◽  
Hatem Alkadhi ◽  
Philipp Kaufmann ◽  
...  

<p><b>Background:</b> We evaluated how comprehensive assessment of coronary artery lesions and their hemodynamic relevance by means of hybrid positron emission tomography (PET) and computed tomography (CT) imaging would affect decision-making in coronary artery bypass surgery (CABG), compared with using invasive coronary angiography (ICA) alone.</p><p><b>Methods:</b> After undergoing ICA, 27 patients (21 men and 6 women; mean SD age, 66 � 10 years) planned for cardiac surgery were scheduled for myocardial perfusion stress/rest evaluation with [13N]ammonia PET and CT coronary angiography. Only ICA was available to the surgeon. Postoperatively, the performed CABG was compared with the hypothetical strategy based on hybrid PET/CT findings (regional coronary flow reserve [CFR], myocardial perfusion defects). Procedures included CABG (n = 18) alone, CABG combined with valve replacement (n = 6), and CABG combined with isolated valve replacement (n = 3). A total of 56 bypass grafts (28 venous and 28 arterial) and 66 distal anastomoses were placed.</p><p><b>Results:</b> CT evaluation showed 93% concordance (66/71) with ICA regarding significant stenoses, with sensitivity, specificity, positive predictive value, and negative predictive value of 93.1%, 98.7%, 94.4%, and 98.4%, respectively. In the PET scan, 16 patients had 1 ischemic region, and 12 patients had 1 scar region, including 5 patients who presented with mixed conditions (scar and ischemia). One patient had a completely normal myocardium. Compared with the performed surgery, PET/CT fusion evaluation showed that of the performed anastomoses, 48% had documented ischemia (with a CFR <2 in 86%), 38% were nonischemic (although a CFR value <2 was found in 78%), and 14% had scar tissue (fixed perfusion defect).</p><p><b>Conclusions:</b> Although <50% of bypasses were placed to areas with myocardial ischemia, the CFR was low in the majority of nonischemic regions, a finding that may have important prognostic relevance. PET/CT fusion imaging could potentially influence planning for CABG and provide incremental prognostic information.</p>


Sign in / Sign up

Export Citation Format

Share Document