scholarly journals Secure Virtualization Environment Based on Advanced Memory Introspection

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Shuhui Zhang ◽  
Xiangxu Meng ◽  
Lianhai Wang ◽  
Lijuan Xu ◽  
Xiaohui Han

Most existing virtual machine introspection (VMI) technologies analyze the status of a target virtual machine under the assumption that the operating system (OS) version and kernel structure information are known at the hypervisor level. In this paper, we propose a model of virtual machine (VM) security monitoring based on memory introspection. Using a hardware-based approach to acquire the physical memory of the host machine in real time, the security of the host machine and VM can be diagnosed. Furthermore, a novel approach for VM memory forensics based on the virtual machine control structure (VMCS) is put forward. By analyzing the memory of the host machine, the running VMs can be detected and their high-level semantic information can be reconstructed. Then, malicious activity in the VMs can be identified in a timely manner. Moreover, by mutually analyzing the memory content of the host machine and VMs, VM escape may be detected. Compared with previous memory introspection technologies, our solution can automatically reconstruct the comprehensive running state of a target VM without any prior knowledge and is strongly resistant to attacks with high reliability. We developed a prototype system called the VEDefender. Experimental results indicate that our system can handle the VMs of mainstream Linux and Windows OS versions with high efficiency and does not influence the performance of the host machine and VMs.

2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


2020 ◽  
Vol 12 (39) ◽  
pp. 43750-43760 ◽  
Author(s):  
Hanvin Kim ◽  
Dae-Yeong Kim ◽  
Shungo Zen ◽  
Jun Kang ◽  
Nozomi Takeuchi

Author(s):  
Mark O Sullivan ◽  
Carl T Woods ◽  
James Vaughan ◽  
Keith Davids

As it is appreciated that learning is a non-linear process – implying that coaching methodologies in sport should be accommodative – it is reasonable to suggest that player development pathways should also account for this non-linearity. A constraints-led approach (CLA), predicated on the theory of ecological dynamics, has been suggested as a viable framework for capturing the non-linearity of learning, development and performance in sport. The CLA articulates how skills emerge through the interaction of different constraints (task-environment-performer). However, despite its well-established theoretical roots, there are challenges to implementing it in practice. Accordingly, to help practitioners navigate such challenges, this paper proposes a user-friendly framework that demonstrates the benefits of a CLA. Specifically, to conceptualize the non-linear and individualized nature of learning, and how it can inform player development, we apply Adolph’s notion of learning IN development to explain the fundamental ideas of a CLA. We then exemplify a learning IN development framework, based on a CLA, brought to life in a high-level youth football organization. We contend that this framework can provide a novel approach for presenting the key ideas of a CLA and its powerful pedagogic concepts to practitioners at all levels, informing coach education programs, player development frameworks and learning environment designs in sport.


2002 ◽  
Vol 70 (9) ◽  
pp. 4880-4891 ◽  
Author(s):  
Julia Eitel ◽  
Petra Dersch

ABSTRACT The YadA protein is a major adhesin of Yersinia pseudotuberculosis that promotes tight adhesion to mammalian cells by binding to extracellular matrix proteins. In this study, we first addressed the possibility of competitive interference of YadA and the major invasive factor invasin and found that expression of YadA in the presence of invasin affected neither the export nor the function of invasin in the outer membrane. Furthermore, expression of YadA promoted both bacterial adhesion and high-efficiency invasion entirely independently of invasin. Antibodies against fibronectin and β1 integrins blocked invasion, indicating that invasion occurs via extracellular-matrix-dependent bridging between YadA and the host cell β1 integrin receptors. Inhibitor studies also demonstrated that tyrosine and Ser/Thr kinases, as well as phosphatidylinositol 3-kinase, are involved in the uptake process. Further expression studies revealed that yadA is regulated in response to several environmental parameters, including temperature, ion and nutrient concentrations, and the bacterial growth phase. In complex medium, YadA production was generally repressed but could be induced by addition of Mg2+. Maximal expression of yadA was obtained in exponential-phase cells grown in minimal medium at 37°C, conditions under which the invasin gene is repressed. These results suggest that YadA of Y. pseudotuberculosis constitutes another independent high-level uptake pathway that might complement other cell entry mechanisms (e.g., invasin) at certain sites or stages during the infection process.


Author(s):  
Yunfei Fu ◽  
Hongchuan Yu ◽  
Chih-Kuo Yeh ◽  
Tong-Yee Lee ◽  
Jian J. Zhang

Brushstrokes are viewed as the artist’s “handwriting” in a painting. In many applications such as style learning and transfer, mimicking painting, and painting authentication, it is highly desired to quantitatively and accurately identify brushstroke characteristics from old masters’ pieces using computer programs. However, due to the nature of hundreds or thousands of intermingling brushstrokes in the painting, it still remains challenging. This article proposes an efficient algorithm for brush Stroke extraction based on a Deep neural network, i.e., DStroke. Compared to the state-of-the-art research, the main merit of the proposed DStroke is to automatically and rapidly extract brushstrokes from a painting without manual annotation, while accurately approximating the real brushstrokes with high reliability. Herein, recovering the faithful soft transitions between brushstrokes is often ignored by the other methods. In fact, the details of brushstrokes in a master piece of painting (e.g., shapes, colors, texture, overlaps) are highly desired by artists since they hold promise to enhance and extend the artists’ powers, just like microscopes extend biologists’ powers. To demonstrate the high efficiency of the proposed DStroke, we perform it on a set of real scans of paintings and a set of synthetic paintings, respectively. Experiments show that the proposed DStroke is noticeably faster and more accurate at identifying and extracting brushstrokes, outperforming the other methods.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2534
Author(s):  
Oualid Doukhi ◽  
Deok-Jin Lee

Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehicles (MAVs) due to their limited size and computational power. This paper presents a novel approach for enabling a micro aerial vehicle system equipped with a laser range finder to autonomously navigate among obstacles and achieve a user-specified goal location in a GPS-denied environment, without the need for mapping or path planning. The proposed system uses an actor–critic-based reinforcement learning technique to train the aerial robot in a Gazebo simulator to perform a point-goal navigation task by directly mapping the noisy MAV’s state and laser scan measurements to continuous motion control. The obtained policy can perform collision-free flight in the real world while being trained entirely on a 3D simulator. Intensive simulations and real-time experiments were conducted and compared with a nonlinear model predictive control technique to show the generalization capabilities to new unseen environments, and robustness against localization noise. The obtained results demonstrate our system’s effectiveness in flying safely and reaching the desired points by planning smooth forward linear velocity and heading rates.


Author(s):  
L. S. Pioro ◽  
I. L. Pioro

It is well known that high-level radioactive wastes (HLRAW) are usually vitrified inside electric furnaces. Disadvantages of electric furnaces are their low melting capacity and restrictions on charge preparation. Therefore, a new concept for a high efficiency combined aggregate – submerged combustion melter (SCM)–electric furnace was developed for vitrification of HLRAW. The main idea of this concept is to use the SCM as the primary high-capacity melting unit with direct melt drainage into an electric furnace. The SCM employs a single-stage method for vitrification of HLRAW. The method includes concentration (evaporation), calcination, and vitrification of HLRAW in a single-stage process inside a melting chamber of the SCM. Specific to the melting process is the use of a gas-air or gas-oxygen-air mixture with direct combustion inside a melt. Located inside the melt are high-temperature zones with increased reactivity of the gas phase, the existence of a developed interface surface, and intensive mixing, leading to intensification of the charge melting and vitrification process. The electric furnace clarifies molten glass, thus preparing the high-quality melt for subsequent melt pouring into containers for final storage.


1984 ◽  
Vol 1 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Tim Johnson

The relentless growth of the computer industry over more than 30 years has been driven on by a series of major innovations. High-level languages; solid-state logic; compatible machine ranges; disk storage; time-sharing; data communications; virtual machine architectures; the use of LSI and solid-state memory; text processing; personal computers; sucessful packaged software; each advance in its turn has opened up new markets and set off a new spurt of expansion. A vital conclusion of this study is that expert systems promise to be another such major innovation.


Sign in / Sign up

Export Citation Format

Share Document