scholarly journals Computational Fluid Dynamics Modeling of Respiratory Airflow in Tracheobronchial Airways of Infant, Child, and Adult

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Endalew Getnet Tsega

During human growth and development from infancy to adulthood, dramatic changes occur in the respiratory system. It is important to understand respiratory airflow in different age groups in age-specific treatment of respiratory disorders. This study numerically investigated the age-related effects on inspiratory and expiratory airflow dynamics in four-generation lung airway models under normal breathing conditions. Tracheobronchial airway models of infant (6 month old), child (5 years old), and adult (25 years old) from sixth to ninth generations were constructed for the study. Computational fluid dynamics (CFD) was used to solve the equations governing the airflow. Results of this study indicate that as age increases, airflow velocity, pressure, and wall shear stress decrease for both inspiration and expiration in this particular subregion of the respiratory tract. During inspiration, the splitting of velocity streamlines at bifurcations increases with age. The opposite situation merging happens during expiration, and it also increases with age. The level of splitting and merging of streamlines here reflects the influence of respiratory mechanics in the age groups. The computational models provide new information on characteristics and patterns of age-dependent respiratory airflow in the sixth to ninth generations of tracheobronchial airways and can be applied in other generations.

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 79
Author(s):  
Minghan Luo ◽  
Wenjie Xu ◽  
Xiaorong Kang ◽  
Keqiang Ding ◽  
Taeseop Jeong

The ultraviolet photochemical degradation process is widely recognized as a low-cost, environmentally friendly, and sustainable technology for water treatment. This study integrated computational fluid dynamics (CFD) and a photoreactive kinetic model to investigate the effects of flow characteristics on the contaminant degradation performance of a rotating annular photoreactor with a vacuum-UV (VUV)/UV process performed in continuous flow mode. The results demonstrated that the introduced fluid remained in intensive rotational movement inside the reactor for a wide range of inflow rates, and the rotational movement was enhanced with increasing influent speed within the studied velocity range. The CFD modeling results were consistent with the experimental abatement of methylene blue (MB), although the model slightly overestimated MB degradation because it did not fully account for the consumption of OH radicals from byproducts generated in the MB decomposition processes. The OH radical generation and contaminant degradation efficiency of the VUV/UV process showed strong correlation with the mixing level in a photoreactor, which confirmed the promising potential of the developed rotating annular VUV reactor in water treatment.


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12531-12531
Author(s):  
Junjie Chen ◽  
Xuhui Gao ◽  
Longfei Yan ◽  
Deguang Xu

Retraction of ‘Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production’ by Junjie Chen et al., RSC Adv., 2018, 8, 25183–25200, DOI: 10.1039/C8RA04440F.


2018 ◽  
Vol 35 (9) ◽  
pp. 098101
Author(s):  
Shu-Zhe Mei ◽  
Quan Wang ◽  
Mei-Lan Hao ◽  
Jian-Kai Xu ◽  
Hong-Ling Xiao ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Weijiu Cui ◽  
Chuankai Zhao ◽  
Sheng Wang

Traditional methods fail to predict the pumping pressure loss of high-performance concrete properly in super high-rise pumping situations due to complex changes of concrete properties. Therefore, it is imperative to propose a relative accurate method for pumping pressure estimation in super high-rise buildings. This paper builds the simplified pressure calculation method “pressure induced by the gravity plus pressure along the pipe line.” The later one is gained by establishing topology optimized model based on computational fluid dynamics and considering the lubrication layer formation. The effect of rheological properties and flow rate is analyzed based on this model in detail. Furthermore, the developed calculation method is verified by the measured pumping pressure during the super high-rise building construction of the Shanghai Tower (the tallest building in China recently). The relative differences between the calculation results and the measured data in situ are less than 6%, indicating the applicability of this method for predicting the pressure loss of the super high-rise pumping.


Sign in / Sign up

Export Citation Format

Share Document