scholarly journals Energy Evolution Behavior and Mesodamage Mechanism of Crumb Rubber Concrete

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Shengtong Di ◽  
Chao Jia ◽  
Weiguo Qiao ◽  
Kang Li ◽  
Kai Tong

The energy evolution behaviour and mesodamage mechanism of CRC (crumb rubber concrete) were investigated by laboratory experiments and numerical simulations. The mesoscopic physical and mechanical parameters of CRC (crumb rubber concrete) materials were analyzed and determined by the discrete element method and trial-and-error method, and the mechanism and evolution of microcracks propagation during CRC failure were studied based on the parallel-bond model. The relationship among dissipation energy, damage threshold, and rubber content during CRC damage was studied by adopting the method of microscopic energy tracking. The energy release ratio was proposed to analyze the degree of “brittleness” of CRC after reaching its peak strength. The essential mechanism of different failure characteristics of CRC and NC (normal concrete) was analyzed and discussed by referring to their correlation between the microenergy evolution rule and the constitutive curve. The results show that (1) the calibrated mesoscopic physical and mechanical parameters can better reflect the mechanical characteristics of CRC materials, (2) there is a strong correlation between the mesoscopic damage threshold of CRC with different rubber contents and the proportion of dissipation energy at the peak strength, and the damage threshold of the CRC with 25% rubber mass is the largest, (3) the relationship between elastic strain energy release ratio of CRC and rubber particle contents can be fitted by the negative exponential function, and (4) the essential reasons for the different destruction characteristics of CRC and NC is that the addition of rubber particles makes more external input energy to be converted into dissipative energy required for microcracks propagation and sliding friction between particles and released step by step.

2019 ◽  
Vol 209 ◽  
pp. 340-353 ◽  
Author(s):  
Qi Guo ◽  
Ruyi Zhang ◽  
Qirui Luo ◽  
Han Wu ◽  
Huping Sun ◽  
...  

2014 ◽  
Vol 941-944 ◽  
pp. 761-764
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation about the ratio of bending-compressive strength of the crumb rubber concrete modified by latex,the concrete with various quantity of rubber,under the condition dosage of latex is 0.5% of cement quality.The result of experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio of bending-compressive strength could be enhanced at the same time.


2019 ◽  
Vol 18 (1) ◽  
pp. 2-17 ◽  
Author(s):  
Danda Li ◽  
Rebecca Gravina ◽  
Yan Zhuge ◽  
Julie E. Mills

2014 ◽  
Vol 919-921 ◽  
pp. 1916-1919
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation of the ratio between tensile strength and compressive strength of the Crumb Rubber Concrete Modified by latex,the concrete with various quantity of rubber,under the condition Dosage of latex is 0.5% of cement quality.The result of Experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio between tensile strength and compressive strength could be enhanced at the same time.


2013 ◽  
Vol 645 ◽  
pp. 172-175
Author(s):  
Wei Li ◽  
Xiao Chu Wang ◽  
Jun Wei Wang ◽  
Chuan Ji Wang

The mechanical properties of concrete with composition of scrapped rubber tyre crumb replacing part of the fine aggregates were investigated. The testing method of the mechanical properties was executed according to . Many groups of crumb rubber concrete specimens are manufactured in different kinds of size and amount of rubber chips. The powder rubber and crumb rubber were mixed into C35 plain concrete, by the volume rations of 0%, 20%, 40 %, 60%, 80% and 100% of the fine aggregates, to investigate the influence of size and amount of rubber chips on the mechanical properties. The results of test indicate: the cubic compression strength, the tensile splitting strength and the strength of rupture decreased with the increase of rubber admixture. But there are some remarkable properties which is difficult to attain on ordinary concrete, such as better cracking resistance, better deformation property, minor density and so on.


Sign in / Sign up

Export Citation Format

Share Document