scholarly journals Far-Infrared-Emitting Sericite Board Upregulates Endothelial Nitric Oxide Synthase Activity through Increasing Biosynthesis of Tetrahydrobiopterin in Endothelial Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Seonhee Kim ◽  
Ikjun Lee ◽  
Hee-Jung Song ◽  
Su-jeong Choi ◽  
Harsha Nagar ◽  
...  

Far-infrared ray (FIR) therapy has been reported to exert beneficial effects on cardiovascular function by elevating endothelial nitric oxide synthesis (eNOS) activity and nitric oxide (NO) production. Tetrahydrobiopterin (BH4) is a key determinant of eNOS-dependent NO synthesis in vascular endothelial cells. However, whether BH4 synthesis is associated with the effects of FIR on eNOS/NO production has not yet been investigated. In this study, we investigated the effects of FIR on BH4-dependent eNOS/NO production and vascular function. We used FIR-emitting sericite boards as an experimental material and placed human umbilical vein endothelial cells (HUVECs) and Sprague–Dawley rats on the boards with or without FIR irradiation and then evaluated vascular relaxation by detecting NO generation, BH4 synthesis, and Akt/eNOS activation. Our results showed that FIR radiation significantly enhanced Akt/eNOS phosphorylation and NO production in human endothelial cells and aorta tissues. FIR can also induce BH4 storage by elevating levels of enzymes (e.g., guanosine triphosphate cyclohydrolase-1, 6-pyruvoyl tetrahydrobiopterin synthase, sepiapterin reductase, and dihydrofolate reductase), which ultimately results in NO production. These results indicate that FIR upregulated eNOS-dependent NO generation via BH4 synthesis and Akt phosphorylation, which contributes to the regulation of vascular function. This might develop potential clinical application of FIR to treat vascular diseases by augmenting the BH4/NO pathway.

Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5532-5539 ◽  
Author(s):  
Dongmin Liu ◽  
Laurie L. Homan ◽  
Joseph S. Dillon

Abstract Genistein may improve vascular function, but the mechanism of this effect is unclear. We tested the hypothesis that genistein directly regulates vascular function through stimulation of endothelial nitric oxide synthesis. Genistein activated endothelial nitric oxide synthase (eNOS) in intact bovine aortic endothelial cells and human umbilical vein endothelial cells over an incubation period of 10 min. The maximal eNOS activity was at 1 μm genistein. Consistent with this activation pattern, 1 μm genistein maximally stimulated the phosphorylation of eNOS at serine 1179 at 10 min of incubation. The rapid activation of eNOS by genistein was not dependent on RNA transcription or new protein synthesis and was not blocked by a specific estrogen receptor antagonist. In addition, inhibition of MAPK or phosphatidylinositol 3-OH kinase/Akt kinase had no affect on eNOS activation by genistein. Furthermore, the genistein effect on eNOS was also independent of tyrosine kinase inhibition. However, inhibition of cAMP-dependent kinase [protein kinase A (PKA)] by H89 completely abolished the genistein-stimulated eNOS activation and phosphorylation, suggesting that genistein acted through a PKA-dependent pathway. These findings demonstrated that genistein had direct nongenomic effects on eNOS activity in vascular endothelial cells, leading to eNOS activation and nitric oxide synthesis. These effects were mediated by PKA and were unrelated to an estrogenic effect. This cellular mechanism may underlie some of the cardiovascular protective effects proposed for soy phytoestrogens.


2021 ◽  
Vol 22 (19) ◽  
pp. 10287
Author(s):  
Chih-Hsien Wu ◽  
Yi-Lin Chiu ◽  
Chung-Yueh Hsieh ◽  
Guo-Shiang Tsung ◽  
Lian-Shan Wu ◽  
...  

Cilostazol was suggested to be beneficial to retard in-stent atherosclerosis and prevent stent thrombosis. However, the mechanisms responsible for the beneficial effects of cilostazol are not fully understood. In this study, we attempted to verify the mechanism of the antithrombotic effect of cilostazol. Human umbilical vein endothelial cells (HUVECs) were cultured with various concentrations of cilostazol to verify its impact on endothelial cells. KLF2, silent information regulator transcript-1 (SIRT1), endothelial nitric oxide synthase (eNOS), and endothelial thrombomodulin (TM) expression levels were examined. We found cilostazol significantly activated KLF2 expression and KLF2-related endothelial function, including eNOS activation, Nitric oxide (NO) production, and TM secretion. The activation was regulated by SIRT1, which was also stimulated by cilostazol. These findings suggest that cilostazol may be capable of an antithrombotic and vasculoprotective effect in endothelial cells.


2007 ◽  
Vol 293 (1) ◽  
pp. C458-C467 ◽  
Author(s):  
Jian-Zhong Sheng ◽  
Andrew P. Braun

The contribution of small-conductance (SKCa) and intermediate-conductance Ca2+-activated K+ (IKCa) channels to the generation of nitric oxide (NO) by Ca2+-mobilizing stimuli was investigated in human umbilical vein endothelial cells (HUVECs) by combining single-cell microfluorimetry with perforated patch-clamp recordings to monitor agonist-evoked NO synthesis, cytosolic Ca2+ transients, and membrane hyperpolarization in real time. ATP or histamine evoked reproducible elevations in NO synthesis and cytosolic Ca2+, as judged by 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) and fluo-3 fluorescence, respectively, that were tightly associated with membrane hyperpolarizations. Whereas evoked NO synthesis was unaffected by either tetraethylammonium (10 mmol/l) or BaCl2 (50 μmol/l) + ouabain (100 μmol/l), depleting intracellular Ca2+ stores by thapsigargin or removing external Ca2+ inhibited NO production, as did exposure to high (80 mmol/l) external KCl. Importantly, apamin and charybdotoxin (ChTx)/ triarylmethane (TRAM)-34, selective blockers SKCa and IKCa channels, respectively, abolished both stimulated NO synthesis and membrane hyperpolarization and decreased evoked Ca2+ transients. Apamin and TRAM-34 also inhibited an agonist-induced outwardly rectifying current characteristic of SKCa and IKCa channels. Under voltage-clamp control, we further observed that the magnitude of agonist-induced NO production varied directly with the degree of membrane hyperpolarization. Mechanistically, our data indicate that SKCa and IKCa channel-mediated hyperpolarization represents a critical early event in agonist-evoked NO production by regulating the influx of Ca2+ responsible for endothelial NO synthase activation. Moreover, it appears that the primary role of agonist-induced release of intracellular Ca2+ stores is to trigger the opening of both KCa channels along with Ca2+ entry channels at the plasma membrane. Finally, the observed inhibition of stimulated NO synthesis by apamin and ChTx/TRAM-34 demonstrates that SKCa and IKCa channels are essential for NO-mediated vasorelaxation.


2009 ◽  
Vol 296 (1) ◽  
pp. C182-C192 ◽  
Author(s):  
Sumathy Mohan ◽  
Ryszard Konopinski ◽  
Bo Yan ◽  
Victoria E. Centonze ◽  
Mohan Natarajan

A decline in the bioavailability of nitric oxide (NO) that causes endothelial dysfunction is a hallmark of diabetes. The availability of NO to the vasculature is regulated by endothelial nitric oxide synthase (eNOS) activity and the involvement of heat shock protein-90 (Hsp-90) in the regulation of eNOS activity has been demonstrated. Hsp-90 has been shown to interact with upstream kinases [inhibitor κB kinases (IKK)α, β, and γ] in nonvascular cells. In this study, we have investigated the interaction of Hsp-90-IKKβ in endothelial cells under conditions of high glucose (HG) as a possible mechanism that diminishes Hsp-90-eNOS interaction, which could contribute to reduced bioavailability of NO. We report for the first time that IKKβ interacts with Hsp-90, and this interaction is augmented by HG in vascular endothelial cells. HG also augments transcriptional (3.5 ± 0.65-fold) and translational (1.97 ± 0.17-fold) expression as well as the catalytic activity of IKKβ (2.45 ± 0.4-fold). Both IKKβ and eNOS could be coimmunoprecipitated with Hsp-90. Inhibition of Hsp-90 with geldanamycin (2 μM) or Radicicol (20 μM) mitigated (0.45 ± 0.04-fold and 0.93 ± 0.16-fold, respectively) HG induced-IKKβ activity (2.5 ± 0.42-fold). Blocking of IKKβ expression by IKK inhibitor II (15 μM wedelolactone) or small interferring RNA (siRNA) improved Hsp-90-eNOS interaction and NO production under conditions of HG. These results illuminate a possible mechanism for the declining eNOS activity reported under conditions of HG.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Lakeisha C Tillery ◽  
Evangeline D Motley-Johnson

Protease-activated receptors (PARs) have been shown to regulate endothelial nitric oxide synthase (eNOS) through the activation of specific sites on the enzyme. It has been established that phosphorylation of eNOS-Ser-1177 leads to the production of the potent vasodilator nitric oxide (NO), and is associated with PAR-2 activation; while phosphorylation of eNOS-Thr-495 decreases NO production, and is coupled to PAR-1 activation. In this study, we demonstrate a differential regulation of the eNOS/NO pathway by the PARs using primary adult human coronary artery endothelial cells (HCAEC). Thrombin and the PAR-1 activating peptide, TFLLR, which are known to phosphorylate eNOS-Thr-495 in bovine and human umbilical vein endothelial cells, phosphorylated eNOS-Ser-1177 in HCAECs, and increased NO production. The PAR-1 responses were blocked using SCH-79797, a PAR-1 inhibitor, and L-NAME was used to inhibit NO production. A PAR-2 specific ligand, SLIGRL, which has been shown to phosphorylate eNOS-Ser-1177 in bovine and human umbilical vein endothelial cells, primarily regulated eNOS-Thr-495 phosphorylation and suppressed NO production in the HCAECs. PAR-3, known for its non-signaling potential, was activated by TFRGAP, a PAR-3 mimicking peptide, and only induced phosphorylation of eNOS-Thr-495 with no effect on NO production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was calcium-dependent using the calcium chelator, BAPTA, and eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632. These data suggest a vascular bed specific differential coupling of PARs to the signaling pathways that regulate eNOS and NO production that may be responsible for the modulation of endothelial function associated with cardiovascular disease.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sumathy Mohan ◽  
Ryzard Konopinski ◽  
Mohan Natarajan

A decline in the bioavailability of nitric oxide (NO) that causes endothelial dysfunction is a hall-mark of diabetes. The availability of NO to the vasculature is regulated by endothelial nitric oxide synthase (eNOS) activity and the involvement of heat shock protein 90 (Hsp-90) in the regulation of eNOS activity has been demonstrated. Hsp-90 has been shown to interact with upstream kinases (inhibitor kappa B kinases α, β and γ) in non-vascular cells. In this study, we have investigated the interaction of Hsp-90-IKKβ in endothelial cells under conditions of high glucose (HG) as a possible mechanism that diminishes Hsp-90-eNOS interaction, which could contribute to reduced bioavailability of NO. We report for the first time that IKKβ interacts with Hsp-90 and this interaction is augmented by HG in vascular endothelial cells. HG also augments transcriptional (4.02 ± 0.81-folds) and translational (1.97 ± 0.17-fold) expression as well as the catalytic activity of IKKβ (2.04 ± 0.06-folds). Another important and novel finding is that both IKKβ and eNOS could be co-immunoprecipitated with Hsp-90 (Figures A & B ) thus indicating the possible existence of a complex of IKKβ and eNOS interacting with single pool of Hsp-90. Inhibition of Hsp-90 with geldanamycin (2μM) or Radicicol (20μM) mitigated (0.45 ± 0.04 -fold and 0.93 ± 0.16-fold, respectively) HG induced-IKKβ activity (2.5 ± 0.416-fold). Blocking of IKKβ expression by IKK inhibitor II (15μM wedelolactone) or siRNA improved Hsp-90-eNOS interaction and NO production under conditions of HG. These results illuminate a possible mechanism for the declining eNOS activity reported under conditions of HG.


2016 ◽  
Vol 310 (11) ◽  
pp. L1199-L1205 ◽  
Author(s):  
Sudakshina Ghosh ◽  
Manveen Gupta ◽  
Weiling Xu ◽  
Deloris A. Mavrakis ◽  
Allison J. Janocha ◽  
...  

The impairment of vasodilator nitric oxide (NO) production is well accepted as a typical marker of endothelial dysfunction in vascular diseases, including in the pathophysiology of pulmonary arterial hypertension (PAH), but the molecular mechanisms accounting for loss of NO production are unknown. We hypothesized that low NO production by pulmonary arterial endothelial cells in PAH is due to inactivation of NO synthase (eNOS) by aberrant phosphorylation of the protein. To test the hypothesis, we evaluated eNOS levels, dimerization, and phosphorylation in the vascular endothelial cells and lungs of patients with PAH compared with controls. In mechanistic studies, eNOS activity in endothelial cells in PAH lungs was found to be inhibited due to phosphorylation at T495. Evidence pointed to greater phosphorylation/activation of protein kinase C (PKC) α and its greater association with eNOS as the source of greater phosphorylation at T495. The presence of greater amounts of pT495-eNOS in plexiform lesions in lungs of patients with PAH confirmed the pathobiological mechanism in vivo. Transfection of the activating mutation of eNOS (T495A/S1177D) restored NO production in PAH cells. Pharmacological blockade of PKC activity by β-blocker also restored NO formation by PAH cells, identifying one mechanism by which β-blockers may benefit PAH and cardiovascular diseases through recovery of endothelial functions.


2019 ◽  
Vol 242 (2) ◽  
pp. 159-172 ◽  
Author(s):  
Jiean Xu ◽  
Qiuhua Yang ◽  
Xiaoyu Zhang ◽  
Zhiping Liu ◽  
Yapeng Cao ◽  
...  

Insulin resistance-related disorders are associated with endothelial dysfunction. Accumulating evidence has suggested a role for adenosine signaling in the regulation of endothelial function. Here, we identified a crucial role of endothelial adenosine kinase (ADK) in the regulation of insulin resistance. Feeding mice with a high-fat diet (HFD) markedly enhanced the expression of endothelial Adk. Ablation of endothelial Adk in HFD-fed mice improved glucose tolerance and insulin sensitivity and decreased hepatic steatosis, adipose inflammation and adiposity, which were associated with improved arteriole vasodilation, decreased inflammation and increased adipose angiogenesis. Mechanistically, ADK inhibition or knockdown in human umbilical vein endothelial cells (HUVECs) elevated intracellular adenosine level and increased endothelial nitric oxide synthase (NOS3) activity, resulting in an increase in nitric oxide (NO) production. Antagonism of adenosine receptor A2b abolished ADK-knockdown-enhanced NOS3 expression in HUVECs. Additionally, increased phosphorylation of NOS3 in ADK-knockdown HUVECs was regulated by an adenosine receptor-independent mechanism. These data suggest that Adk-deficiency-elevated intracellular adenosine in endothelial cells ameliorates diet-induced insulin resistance and metabolic disorders, and this is associated with an enhancement of NO production caused by increased NOS3 expression and activation. Therefore, ADK is a potential target for the prevention and treatment of metabolic disorders associated with insulin resistance.


2021 ◽  
Author(s):  
Ichiro Saito ◽  
Tomoe Yamazaki ◽  
Ryoko Nakayama-Ushikoshi ◽  
Syakya Supriya ◽  
Daisuke Omagari ◽  
...  

Abstract Percutaneously absorbed carbon dioxide enhances blood flow. The mechanism by which it does so is unclear, we hypothesized that it involves bicarbonate ions. Balb/c mice were bathed in neutral bicarbonate ionized water (NBIW) and showed increased blood bicarbonate levels and blood flow via phosphorylation of peripheral vascular endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO). Phosphorylation of eNOS and NO production were also increased in human umbilical vein endothelial cells cultured in medium containing NBIW, and NBIW showed reactive oxygen species scavenging activity. In a double-blind, randomized study in men and women aged 30 to 59 years with subjective cold intolerance, bathing in NBIW elevated body temperature faster than bathing in a control solution and improved chills and sleep quality. Taken together, our results show that percutaneously absorbed bicarbonate ions act directly on endothelial cells, phosphorylation of eNOS increases NO production and thus improves blood flow.


2010 ◽  
Vol 298 (1) ◽  
pp. H112-H118 ◽  
Author(s):  
Jin Qian ◽  
Qian Zhang ◽  
Jarrod E. Church ◽  
David W. Stepp ◽  
Radu D. Rudic ◽  
...  

Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), exerts control over vascular function via two distinct mechanisms, the activation of soluble guanylate cyclase (sGC)/cGMP-dependent signaling or through S-nitrosylation of proteins with reactive thiols ( S-nitrosylation). Previous studies in cultured endothelial cells revealed that eNOS targeted to the plasma membrane (PM) releases greater amounts of NO compared with Golgi tethered eNOS. However, the significance of eNOS localization to sGC-dependent or -independent signaling is not known. Here we show that PM-targeted eNOS, when expressed in human aortic endothelial cells (HAEC) and isolated blood vessels, increases sGC/cGMP signaling to a greater extent than Golgi-localized eNOS. The ability of local NO production to influence sGC-independent mechanisms was also tested by monitoring the secretion of Von Willebrand factor (vWF), which is tonically inhibited by the S-nitrosylation of N-ethylmaleimide sensitive factor (NSF). In eNOS “knockdown” HAECs, vWF secretion was attenuated to a greater degree by PM eNOS compared with a Golgi-restricted eNOS. Moreover, the PM-targeted eNOS induced greater S-nitrosylation of NSF vs. Golgi eNOS. To distinguish between the amount of NO generated and the intracellular location of synthesis, we expressed Golgi and PM-targeted calcium-insensitive forms of eNOS in HAEC. These constructs, which generate equal amounts of NO regardless of location, produced equivalent increases in cGMP in bioassays and equal inhibition of vWF secretion. We conclude that the greater functional effects of PM eNOS are due to the increased amount of NO produced rather than effects derived from the local synthesis of NO.


Sign in / Sign up

Export Citation Format

Share Document