scholarly journals Validation of an HPLC Method for Determination of Bisphenol-A Migration from Baby Feeding Bottles

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Ruth Rodriguez ◽  
Elianna Castillo ◽  
Diana Sinuco

A simple and economic high-performance liquid chromatography (HPLC-UV-Vis) analytical method was validated for the quantitation of specific Bisphenol-A migration from baby feeding bottles. Overall and specific migration assays were done with different food simulating matrices using the filling method. Good linearity was obtained over the concentration range of 0.01–0.6 mg/kg. The limit of detection (LOD) and limit of quantification (LOQ) were 0.004 and 0.010 mg/kg, respectively. The repeatability of the method (%RSD, n=10) was between 89.5 and 99.0%, while recovery ranged from 83.2 to 98.4%. The method was applied to specific migration assays from baby feeding bottles purchased from different plastic producers in Colombia. The results show that, in a first migration assay, Bisphenol-A was not detectable in all samples. In a second migration test, Bisphenol-A concentrations were higher than the most restricted limit (0.05 mg/kg) with ethanol 95% and isooctane as food simulants.

2016 ◽  
Vol 35 (2) ◽  
pp. 225 ◽  
Author(s):  
Violeta Ivanova-Petropulos ◽  
Krste Tašev ◽  
Marina Stefova

<p>A solid-phase extraction method followed by reverse phase high-performance liquid chromatography (RP-HPLC) was optimized and validated for the quantitative determination of tartaric, malic, shikimic, lactic, citric and succinic acids in wine. Solid-phase extraction was carried out with C18 cartridges and extraction recoveries for all acids ranging from 98.3 to 103% were obtained. HPLC separation was performed with isocratic elution on a LiChrosorb RP-18 column (250 × 4.6 mm I.D., 5 µm) protected with the appropriate guard column. The mobile phase was a 5 mM solution of H<sub>3</sub>PO<sub>4</sub> with pH 2.1 at a flow rate of 1 ml/min. Detection of the organic acids was performed at 210 nm. The developed method was validated by checking its linearity, limit of detection (LOD), limit of quantification (LOQ), precision and recovery. The method was applied to the analysis of organic acids in Macedonian red and white wines.</p>


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (09) ◽  
pp. 68-73
Author(s):  
K Vijaya Sri ◽  
M. Shiva Kumar ◽  
M. A. Madhuri ◽  
Suresha K. ◽  

In this study, a high-performance liquid chromatographic method (HPLC) was developed, validated and applied for the determination of raltegravir in biological sample like saliva. Liquid- liquid extraction was performed for isolation of the drug and elimination of saliva interferences. Samples of saliva was extracted with 50µL of ortho phosphoric acid and 3ml of methanol was added and spiked with raltegravir. The chromatographic separation was performed on Agilent Eclipse C18 (100 mm × 4.6 mm, 3.5µm) column, by using 80:20 v/v acetonitrile: water as a mobile phase under isocratic conditions at a flow rate of 1.0 mL/min for UV detection at 240 nm. Retention time of raltegravir was found to be 1.030 min. Linearity was found to be in the range of 25-1000 ng/mL with regression equation y = 13864x + 40495 and correlation coefficient 0.999. The low % RSD value indicates the method is accurate and precise. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.76 and 2.28 ng/mL, respectively. It can be concluded that this validated HPLC method is easy, precise, accurate, sensitive and selective for determination of raltegravir in saliva.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Myriam Ajemni ◽  
Issa-Bella Balde ◽  
Sofiane Kabiche ◽  
Sandra Carret ◽  
Jean-Eudes Fontan ◽  
...  

A stability-indicating assay by reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of pentobarbital sodium in oral formulations: a drug used for infant sedation in computed tomography (CT) or magnetic resonance imaging (MRI) scan. The chromatographic separation was achieved on a reversed-phase C18 column, using isocratic elution and a detector set at 214 nm. The optimized mobile phase consisted of a 0.01 M potassium buffer pH 3 and methanol (40 : 60, v/v). The flow rate was 1.0 mL/min and the run time of analysis was 5 min. The linearity of the method was demonstrated in the range of 5 to 250 μg/mL pentobarbital sodium solution (r2= 0.999). The limit of detection and limit of quantification were 2.10 and 3.97 μg/mL, respectively. The intraday and interday precisions were less than 2.1%. Accuracy of the method ranged from 99.2 to 101.3%. Stability studies indicate that the drug is stable to sunlight and in aqueous solution. Accelerated pentobarbital sodium breakdown by strong alkaline, acidic, or oxidative stress produced noninterfering peaks. This method allows accurate and reliable determination of pentobarbital sodium for drug stability assay in pharmaceutical studies.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Naghi Saadatjou ◽  
Shahab Shariati ◽  
Mostafa Golshekan

A simple and high sensitive preconcentration method based on micelle-mediated extraction followed by high performance liquid chromatography (LC-UV) was developed for preconcentration and determination of trace amounts of bisphenol A (BPA) in aqueous samples. The BPA was quantitatively extracted from aqueous samples in the presence of Triton X-114 as a nonionic surfactant and preconcentrated into the small volume (about 30 μL) of the surfactant-rich phase. Taguchi method, an orthogonal array design (OA16 (45)), was utilized to optimize the various factors affecting the micellar extraction of BPA. The maximum extraction efficiency of BPA was obtained at pH 3, 0.2% (w/v) Triton X-114, and 0.25 mol L−1 sodium acetate. For the preconcentration, the solutions were incubated in a thermostatic water bath at 50°C for 7 min. After centrifuge and separation of aqueous phase, the surfactant-rich phase was diluted with 100 μL acetone and injected in the chromatographic system. Under the optimum conditions, preconcentration factor of 34.9 was achieved for extraction from 10 mL of sample solution and the relative standard deviation (RSD%) of the method was lower than 6.6%. The calibration curve was linear in the range of 0.5–150 μg L−1 with reasonable linearity (r2>0.9987). The limit of detection (LOD) based on S/N = 3 was 0.13 μg L−1 for 10 mL sample volumes. The limit of quantification (LOQ) based on S/N = 10 was 0.43 μg L−1 for 10 mL sample volumes. Finally, the applicability of the proposed method was evaluated by the extraction and determination of BPA in the real samples, and satisfactory results were obtained.


Chemija ◽  
2021 ◽  
Vol 32 (2) ◽  
Author(s):  
Yuliia Maslii ◽  
Ivan Bezruk ◽  
Anna Materiienko ◽  
Olena Ruban ◽  
Liudas Ivanauskas ◽  
...  

A new high-performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of active pharmaceutical substances and preservatives in a new dental medication has been developed. The optimization of HPLC method parameters was done through studies of a mobile phase composition and a detection wavelength. Our developing method uses an ACE C18 column (250 × 4.6 mm, 5 µm) and a gradient mode for separation with the acetonitrile and phosphate buffer solution (adjusted to pH 3.0) as mobile phases. The flow rate is 1 ml/ min, and the detection was set at 260 nm (DAD). The method was evaluated according to the ICH guidelines and the State Pharmacopoeia of Ukraine in terms of specificity, accuracy, linearity and precision (repeatability and intermediate precision). The limit of detection and the limit of quantification were also calculated. The developed method was put in place for the analysis of a combined dental gel to a quantitative determination of the APIs (choline salicylate, lidocaine hydrochloride) and preservatives (methylparaben, propylparaben).


2017 ◽  
Vol 9 (6) ◽  
pp. 54 ◽  
Author(s):  
Yuliya Kondratova ◽  
Liliya Logoyda ◽  
Yuliia Voloshko ◽  
Ahmed Abdel Megied ◽  
Dmytro Korobko ◽  
...  

Objective: A rapid, simple and sensitive RP-HPLC method was developed and validated for the determination of bisoprolol fumarate in bulk and pharmaceutical dosage form.Methods: Chromatographic separation was achieved within 2.5 min on ACQUITY Arc System, Waters Symmetry C18 column (3.9 mm i.d. X 150 mm, 5 μm particle sizes) using a mobile phase consisted of acetonitrile: phosphate buffer (25:75 v/v) in an isocratic mode at a flow rate of 1.4 ml/min. The pH of the mobile phase was adjusted to 7.0 with orthophosphoric acid and UV detection was set at 226 nm.Results: The retention time for bisoprolol fumarate was found to be 2.09 min. The proposed method was validated according to ICH guidelines with respect to linearity, specificity precision, accuracy and robustness. The limit of detection and limit of quantification are calculated and found to be 0.4825 and 1.4621 μg/ml; respectively.Conclusion: The proposed method can help research studies, quality control and routine analysis with lesser resources available. The results of the assay of pharmaceutical formulation of the developed method are highly reliable and reproducible and is in good agreement with the label claim of the medicines.Keywords: Bisoprolol, High-Performance Liquid Chromatography, Validation, ICH guidelines


2013 ◽  
Vol 78 (6) ◽  
pp. 839-850 ◽  
Author(s):  
Igor Jajic ◽  
Sasa Krstovic ◽  
Dragan Glamocic ◽  
Sandra Jaksic ◽  
Biljana Abramovic

The subject of this study is the validation of a high-performance liquid chromatography method for the analysis of amino acids in feed. The contents of amino acids were determined in maize, soybean, soybean meal, as well as in their mixtures enriched with different amounts of methionine, threonine and lysine. The method involves the acid hydrolysis of the sample (6 h at 150?C), automated derivatisation of amino acids with the aid of o-phthaldialdehyde and 9-fluorenylmethyl chloroformate reagents, separation on the ZORBAX Eclipse-AAA column, and detection using a diode-array detector. The method is characterized by high specificity (the difference between the retention times of the feed samples and standard mixtures are below 1.7 %), wide linear range (from 10 to 1000 nmol cm-3, r2 = 0.9999), high accuracy (recovery 93.3-109.4 %), and the precision of the results (RSD below 4.14 % in case of repeatability and below 4.57 % in the case of intermediate precision). The limit of detection and the limit of quantification are in the range 0.004-1.258 ?g cm-3 and 0.011-5.272 ?g cm-3, respectively. The results demonstrate that the procedure can be used as a method for the determination of the composition of primary amino acids of feed proteins.


Author(s):  
SYED IBRAHIM BAJE ◽  
B. JYOTHI ◽  
N. MADHAVI

Objective: The objective of the present study was to develop and validate a novel reverse phase high performance liquid chromatographic (RP-HPLC) method, for simultaneous determination of ritonavir (RIT), ombitasvir (OMB) and paritaprevir (PAR) in bulk mixtures, and in tablets. Methods: Determination of the drugs ritonavir (RIT), ombitasvir (OMB), and paritaprevir (PAR), was carried out applying Hypersil BDS C18 column (250 mm X 4.6 mm i.e., 5 µm particle size), with photodiode array detector at λmax of 254 nm. The mobile phase applied for the current study composed of two solvents, i.e. A (0.01N % w/v potassium di-hydrogen orthophosphate buffer, pH 3.0 adjusted with dilute orthophosphoric acid) and B (acetonitrile). The mobile phase was pumped at a flow rate of 1.0 ml/min in the isocratic mode. The validation study with respect to specificity, linearity, precision, accuracy, and robustness, limit of detection (LOD) and limit of quantification (LOQ) was carried out employing the ICH guidelines. Results: Ritonavir, ombitasvir, and paritaprevir showed linearity of response between 12.5-75 μg/ml for ritonavir, 3.125-18.75 µg/ml for ombitasvir and 18.75–112.5 µg/ml for paritaprevir, with a correlation coefficient (R2) 0.999, 0.999,0.999 for RIT, OMB, and PAR respectively. The % recovery obtained was 99.82±0.14 % RIT, OMB 100.03±0.96 % and for 99.96±0.26 % PAR. The LOD and LOQ values for RIT, OMB, PAR were obtained to be 0.02, 0.019and0.02, µg/ml and 0.07, 0.06 and 0.07 µg/ml, respectively. The method also exhibits good robustness for different chromatographic conditions like wavelength, flow rate, mobile phase, and injection volume. Conclusion: The method was successfully employed, for the quantification of RIT, OMB, and PAR, in the quality control of in-house developed tablets, and can be applied for the industrial use.


Author(s):  
APICHART ATIPAIRIN ◽  
SOMCHAI SAWATDEE

Objective: The present study is aimed to develop and validate a simple, precise and accurate high-performance liquid chromatography (HPLC) method, according to ASEAN guideline for the validation of the analytical procedure, for the determination of mefenamic acid in a topical emulgel preparation. Methods: An emulgel of 1 % mefenamic acid was prepared using carbopol 940 as a gelling agent and cremophor EL as an emulsifying agent. It was diluted with ethanol to make a sample concentration of 200 mg/ml. The method used a C18 column (5 µm; 250 x 4.6 mm) with the mobile phase, consisting of acetonitrile, acetic acid, and water in a ratio of 75:1:24. The column was maintained at 25 °C. The flow rate was 1 ml/min and the injection volume was 10 ml. The peak response was monitored by UV at 282 nm. It was validated for specificity, range, linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ). In addition, forced degradation (hydrolysis, oxidation and dry heat) was performed to determine the capability of the proposed method to analyze the chemical stability of the drug samples during storage. Results: The method was specific to the drug while other excipients did not interfere with the quantitation of mefenamic acid. It was linear in the concentration range of 1.29 to 806 mg/ml. LOD and LOQ were 4.88 and 14.78 mg/ml, respectively. Accuracy of the method was demonstrated by recovery experiments on the synthetic mixture method and the mean percent recovery was 101.10±1.56. Repeatability and intermediate precision were rugged with %RSD values of 1.30 and 1.07, respectively. The method could separate mefenamic acid from other degradation products of forced degradation. Conclusion: The HPLC method presented herein is simple, accurate, sensitive and reproducible for the determination of mefenamic acid in an emulgel. It is served as a stability-indicating method and can be used for the analysis of the drug during product development and stability studies.


Author(s):  
Ibrahim M. Abdulbaqi ◽  
Yusrida Darwis ◽  
Nurzalina Abdul Karim Khan ◽  
Reem Abou Assi ◽  
Gabriel Onn Kit Loh

Objective: To develop and validate a stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method for the determination of colchicine in bulk and ethosomal gel nano-formulation.Methods: The chromatographic conditions were optimized using stainless steel Hypersil Gold C-18 analytical column with the dimensions of 250 mm x 4.6 mm ID x 5 µm. The mobile phase consisted of acetonitrile and ammonium acetate buffer (20 mmol/l, pH=4.85) in the ratio of 32:68 v/v. The flow rate was set at 1 ml/min and the detection wavelength was 353 nm. The column was maintained at 30 °C and the injection volume was 10 µl. The stability of colchicine in different conditions was investigated by exposing the drug to stress degradation using acid, base, oxidation, heat and light.Results: There was no interference from excipients, impurities, dissolution media or degradation products at the retention time of colchicine 5.9 min indicating the specificity of the method. The limit of detection (LOD) and the limit of quantification (LOQ) were 8.64 ng/ml and 26.17 ng/ml respectively. The drug showed good stability under heat, acid, oxidation and light, but substantial degradation was observed under alkali condition. The procedure was validated for specificity, linearity, accuracy and precision.Conclusion: A simple, rapid, specific and stability-indicating HPLC–UV method for the determination of colchicine in the pure and ethosomal gel was successfully developed. The developed method was statistically confirmed to be accurate, precise, and reproducible.


Sign in / Sign up

Export Citation Format

Share Document