scholarly journals RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF RITONAVIR, OMBITASVIR AND PARITAPREVIR IN TABLET DOSAGE FORMS AND THEIR STRESS DEGRADATION STUDIES

Author(s):  
SYED IBRAHIM BAJE ◽  
B. JYOTHI ◽  
N. MADHAVI

Objective: The objective of the present study was to develop and validate a novel reverse phase high performance liquid chromatographic (RP-HPLC) method, for simultaneous determination of ritonavir (RIT), ombitasvir (OMB) and paritaprevir (PAR) in bulk mixtures, and in tablets. Methods: Determination of the drugs ritonavir (RIT), ombitasvir (OMB), and paritaprevir (PAR), was carried out applying Hypersil BDS C18 column (250 mm X 4.6 mm i.e., 5 µm particle size), with photodiode array detector at λmax of 254 nm. The mobile phase applied for the current study composed of two solvents, i.e. A (0.01N % w/v potassium di-hydrogen orthophosphate buffer, pH 3.0 adjusted with dilute orthophosphoric acid) and B (acetonitrile). The mobile phase was pumped at a flow rate of 1.0 ml/min in the isocratic mode. The validation study with respect to specificity, linearity, precision, accuracy, and robustness, limit of detection (LOD) and limit of quantification (LOQ) was carried out employing the ICH guidelines. Results: Ritonavir, ombitasvir, and paritaprevir showed linearity of response between 12.5-75 μg/ml for ritonavir, 3.125-18.75 µg/ml for ombitasvir and 18.75–112.5 µg/ml for paritaprevir, with a correlation coefficient (R2) 0.999, 0.999,0.999 for RIT, OMB, and PAR respectively. The % recovery obtained was 99.82±0.14 % RIT, OMB 100.03±0.96 % and for 99.96±0.26 % PAR. The LOD and LOQ values for RIT, OMB, PAR were obtained to be 0.02, 0.019and0.02, µg/ml and 0.07, 0.06 and 0.07 µg/ml, respectively. The method also exhibits good robustness for different chromatographic conditions like wavelength, flow rate, mobile phase, and injection volume. Conclusion: The method was successfully employed, for the quantification of RIT, OMB, and PAR, in the quality control of in-house developed tablets, and can be applied for the industrial use.

Separations ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Mohd Afzal ◽  
Mohd. Muddassir ◽  
Abdullah Alarifi ◽  
Mohammed Tahir Ansari

A highly specific, accurate, and simple RP-HPLC technique was developed for the real-time quantification of domperidone (DOMP) and lansoprazole (LANS) in commercial formulations. Chromatographic studies were performed using a Luna C8(2), 5 μm, 100Å, column (250 × 4.6 mm, Phenomenex) with a mobile phase composed of acetonitrile/2 mM ammonium acetate (51:49 v/v), pH 6.7. The flow rate was 1 mL·min−1 with UV detection at 289 nm. Linearity was observed within the range of 4–36 µg·mL−1 for domperidone and 2–18 µg·mL−1 for lansoprazole. Method optimization was achieved using Box-Behnken design software, in which three key variables were examined, namely, the flow rate (A), the composition of the mobile phase (B), and the pH (C). The retention time (Y1 and Y3) and the peak area (Y2 and Y4) were taken as the response parameters. We observed that slight alterations in the mobile phase and the flow rate influenced the outcome, whereas the pH exerted no effect. Method validation featured various ICH parameters including linearity, limit of detection (LOD), accuracy, precision, ruggedness, robustness, stability, and system suitability. This method is potentially useful for the analysis of commercial formulations and laboratory preparations.


2020 ◽  
Vol 32 (5) ◽  
pp. 1158-1164
Author(s):  
L. Vaikunta Rao ◽  
K. Tirumala Rao ◽  
V.V. Krishna Mohan Kandepi

A simple, linear gradient liquid chromatographic method (RP-HPLC) is proposed for the simultaneous estimation of related compounds in hydroxy naproxen samples. Chromatographic separation was achieved on Zorbax SB C8 (150 × 4.6) mm, 3.5 μm particle size RRLC short column and eluent A used as 0.1% v/v trifluoroacetic acid in water and eluent B used as acetonitrile using Agilent RRLC (UHPLC) system. The mobile phase flow rate was 1.0 mL/min and the eluted compounds were monitored at 235 nm for related substance method and assay method. The excellent resolution was obtained between hydroxy naproxen and its related compounds, which were eluted within 25 min. The performance of the method was validated with respect to ICH guidelines for specificity, limit of detection, limit of quantification, linearity, accuracy, precision and robustness. The correlation coefficient(r) was > 0.995 for both the methods from linearity data and percentage of recovery is 98.0 to 102.0 for assay method and 80.0 to 120.0% for related substance method. Sensitivity of the method was found be less than 0.5 μg/mL. Peak homogeneity data for naproxen in the chromatograms from the selectivity solution obtained by use of the photodiode array detector demonstrated the specificity of the method for analysis of hydroxy naproxen in presence of the related compounds


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
J. Álvarez-Fuentes ◽  
L. Martín-Banderas ◽  
I. Muñoz-Rubio ◽  
M. A. Holgado ◽  
M. Fernández-Arévalo

A simple, fast, and reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed and validated for determining of a cannabinoid derivate, which displays potent antihyperalgesic activity, 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) into PLGA nanoparticles. Separation was achieved in a C18 column using a mobile phase consisting of two solvents: solvent A, consisting of acetonitrile : water : acetic acid (75 : 23.7 : 1.3 v/v), and solvent B, consisting of acetonitrile. An isocratic method (70 : 30 v/v), with a flow rate of 1.000 mL/min, and a diode array detector were used. The developed method was precise, accurate, and linear over the concentration range of analysis with a limit of detection and a limit of quantification of 0.5 and 1.25 μg/mL, respectively. The developed method was applied to the analysis of CB13 in nanoparticles samples obtained by three different procedures (SEV, FF, and NPP) in terms of encapsulation efficiency and drug release. Nanoparticles size and size distribution were also evaluated founding that NPP method presented the most lowest particle sizes with narrow-size distribution (≈320 nm) and slightly negative zeta potential (≈−25 mV) which presumes a suitable procedure for the synthesis of PLGA-CB13 nanoparticles for oral administration.


2020 ◽  
Vol 10 (1) ◽  
pp. 31-38
Author(s):  
Rahul Suryawanshi ◽  
Siddiqua Shaikh ◽  
Snehal Patil

A new, simple, precise, accurate and reproducible Reverse Phase High Performance Liquid Chromatography (RP-HPLC) method for Simultaneous estimation of bulk and pharmaceutical formulations. Separation of Mirabegron was successfully achieve , C18, 250X4.6mm, 5µm or equivalent in an isocratic mode utilizing methanol water (70:30) at pH 5.0 Adjusted to OPA at a flow rate of 1.0ml/min and eluate was monitored at 243nm, with a retention time of 2.584 minutes for Mirabegron. The method was validated and the response was found to be linear in the drug concentration range of 50µg/ml to150 µg/ml for Mirabegron. The values of the correlation coefficient were found to 0.999for Mirabegron. The Limit of Detection(LOD) and Limit of Quantification (LOQ) for Mirabegron were found to be 0.149 and 0.498 respectively. This method was found to be good percentage recovery were found to be 99 indicates that the proposed method is highly accurate. The specificity of the method shows good correlation between retention times of standard with the sample so, the method specifically determines the analyte in the sample without interference from excipients of tablet dosage forms. The method was extensively validated according to International Council for Harmonisation(ICH) guidelines for Linearity, Accuracy, Precision, Specificity and


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
S. Sowjanya ◽  
Ch. Devadasu

A reverse phase high-performance liquid chromatographic (RP-HPLC) method was developed and validated for simultaneous estimation of levamisole and albendazole in drug substance and in its combinational dosage form. The analysis was carried out usingInertsil ODSC18(4.6 x 150 mm, 5μm) column, and the separation was carried out using a mobile phase containing a buffer of pH 3.5 and acetonitrile (70:30 v/v) pumped at a flow rate of 1.0 mL/min with variable wavelength UV-detection at 224 nm. Both the drugs were well resolved in the stationary phase and the retention times were 2.350 min and 4.055 for levamisole and albendazole, respectively. The method was validated and shown to be linear in the concentration range of 15-45μg/ml and 40-120μg/ml for levamisole and albendazole, respectively. The limit of detection (LOD) and limit of quantification (LOQ) were determined based on standard deviation of the y-intercept and the slope of the calibration curve. LOD and LOQ values were 2.08μg/ml and 6.03μg/ml for levamisole and 3.15μg/ml and 10.40μg/ml for albendazole, respectively. The accuracy of the method was assessed by adding known amount of standard solution (75 %, 100 %, and 125% of the sample concentration) to the preanalyzed sample solution of 100% concentration. All the samples were prepared and analyzed in triplicate. The percentage mean recovery by standard addition experiments of levamisole and albendazole is 99.66% and 98.73%, respectively.


2011 ◽  
Vol 8 (4) ◽  
pp. 1958-1964 ◽  
Author(s):  
H. R. Prajapati ◽  
P. N. Raveshiya ◽  
J. M. Prajapati

A reversed phase high performance liquid chromatographic (RP–HPLC) method was developed and subsequently validated for the determination of atomoxetine hydrochloride in bulk and pharmaceutical formulation. The separation was done by a PerkinElmer Brownlee analytical C8 column (260 mm x 4.6 mm, 5 µm) using methanol: 50 mM KH2PO2buffer (PH adjusted to 6.8 with 0.1 M NaOH), 80:20 v/v as an eluent. UV detection was performed at 270 nm at a flow rate 1.0 mL/min. The validation of the method was performed, and specificity, reproducibility, precision accuracy and ruggedness were confirmed. The correlation coefficient was found to be 0.997 for atomoxetine hydrochloride. The recovery was in the range of 99.94 to 100.98% and limit of quantification was found to be 5.707 µg/mL. The method is simple, rapid, selective and economical too and can be used for the routine analysis of drug in pharmaceutical formulations.


2012 ◽  
Vol 31 (2) ◽  
pp. 205
Author(s):  
Agim Ameti ◽  
Jasmina Slavkovska ◽  
Katerina Starkoska ◽  
Zorica Arsova-Sarafinovska

A simple isocratic reversed-phase high performance liquid chromatographic (RP-HPLC) method was developed for determination of oseltamivir active pharmaceutical ingredient (API) in bulk drug and pharmaceuticals. The separation was achieved on a Purospher STAR® RP – 18e column with a mobile phase consisting of methanol- 0.02 mol l-1 phosphate buffer, pH 5, 50:50 (v/v). Chromatographic results demonstrated the specificity of the method for determination of oseltamivir in presence of degradation products generated in studies of forced decomposition. The limit of detection (LOD) and limit of quantification (LOQ) for oseltamivir phosphate were 0,0162 μg ml-1 and 0,0491 μg ml-1, respectively. The advantages of this method include simple sample treatment and short elution time (less than 6 min). Furthermore, using methanol instead of acetonitrile in a mobile phase composition considerably reduces the laboratory expenses, still retaining adequate sensitivity for routine analysis as well as for evaluation of potentially counterfeit Tamiflu® products. 


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (07) ◽  
pp. 54-57
Author(s):  
P. Sathyanarayana ◽  
◽  
M Vijayalakshmi ◽  
B. N. V Ravi Kumar

A RP-HPLC method was developed and validated for the determination of ramosetron hydrochloride in pharmaceutical formulation as per ICH and FDA guidelines. The method was carried out on a Phenomenex RP-C18 column using a mixture of methanol and water (95:5) in an isocratic mode. The flow rate is 0.8 mL/min and the detection was done at 302 nm. The linearity range was observed in the range of 1-6 mcg/mL. The accuracy of the method was found to be 99.0 to 99.5% and %RSD was found to be less than 2% indicating high degree of accuracy and precision for the proposed HPLC method. Limit of detection and limit of quantification of the method were found to be 0.028 and 0.0851 mcg/mL respectively.


2017 ◽  
Vol 9 (6) ◽  
pp. 54 ◽  
Author(s):  
Yuliya Kondratova ◽  
Liliya Logoyda ◽  
Yuliia Voloshko ◽  
Ahmed Abdel Megied ◽  
Dmytro Korobko ◽  
...  

Objective: A rapid, simple and sensitive RP-HPLC method was developed and validated for the determination of bisoprolol fumarate in bulk and pharmaceutical dosage form.Methods: Chromatographic separation was achieved within 2.5 min on ACQUITY Arc System, Waters Symmetry C18 column (3.9 mm i.d. X 150 mm, 5 μm particle sizes) using a mobile phase consisted of acetonitrile: phosphate buffer (25:75 v/v) in an isocratic mode at a flow rate of 1.4 ml/min. The pH of the mobile phase was adjusted to 7.0 with orthophosphoric acid and UV detection was set at 226 nm.Results: The retention time for bisoprolol fumarate was found to be 2.09 min. The proposed method was validated according to ICH guidelines with respect to linearity, specificity precision, accuracy and robustness. The limit of detection and limit of quantification are calculated and found to be 0.4825 and 1.4621 μg/ml; respectively.Conclusion: The proposed method can help research studies, quality control and routine analysis with lesser resources available. The results of the assay of pharmaceutical formulation of the developed method are highly reliable and reproducible and is in good agreement with the label claim of the medicines.Keywords: Bisoprolol, High-Performance Liquid Chromatography, Validation, ICH guidelines


2013 ◽  
Vol 78 (6) ◽  
pp. 839-850 ◽  
Author(s):  
Igor Jajic ◽  
Sasa Krstovic ◽  
Dragan Glamocic ◽  
Sandra Jaksic ◽  
Biljana Abramovic

The subject of this study is the validation of a high-performance liquid chromatography method for the analysis of amino acids in feed. The contents of amino acids were determined in maize, soybean, soybean meal, as well as in their mixtures enriched with different amounts of methionine, threonine and lysine. The method involves the acid hydrolysis of the sample (6 h at 150?C), automated derivatisation of amino acids with the aid of o-phthaldialdehyde and 9-fluorenylmethyl chloroformate reagents, separation on the ZORBAX Eclipse-AAA column, and detection using a diode-array detector. The method is characterized by high specificity (the difference between the retention times of the feed samples and standard mixtures are below 1.7 %), wide linear range (from 10 to 1000 nmol cm-3, r2 = 0.9999), high accuracy (recovery 93.3-109.4 %), and the precision of the results (RSD below 4.14 % in case of repeatability and below 4.57 % in the case of intermediate precision). The limit of detection and the limit of quantification are in the range 0.004-1.258 ?g cm-3 and 0.011-5.272 ?g cm-3, respectively. The results demonstrate that the procedure can be used as a method for the determination of the composition of primary amino acids of feed proteins.


Sign in / Sign up

Export Citation Format

Share Document