scholarly journals Micelle-Mediated Extraction Prior to LC-UV for Preconcentration and Determination of Trace Amounts of Bisphenol A in Environmental Samples

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Naghi Saadatjou ◽  
Shahab Shariati ◽  
Mostafa Golshekan

A simple and high sensitive preconcentration method based on micelle-mediated extraction followed by high performance liquid chromatography (LC-UV) was developed for preconcentration and determination of trace amounts of bisphenol A (BPA) in aqueous samples. The BPA was quantitatively extracted from aqueous samples in the presence of Triton X-114 as a nonionic surfactant and preconcentrated into the small volume (about 30 μL) of the surfactant-rich phase. Taguchi method, an orthogonal array design (OA16 (45)), was utilized to optimize the various factors affecting the micellar extraction of BPA. The maximum extraction efficiency of BPA was obtained at pH 3, 0.2% (w/v) Triton X-114, and 0.25 mol L−1 sodium acetate. For the preconcentration, the solutions were incubated in a thermostatic water bath at 50°C for 7 min. After centrifuge and separation of aqueous phase, the surfactant-rich phase was diluted with 100 μL acetone and injected in the chromatographic system. Under the optimum conditions, preconcentration factor of 34.9 was achieved for extraction from 10 mL of sample solution and the relative standard deviation (RSD%) of the method was lower than 6.6%. The calibration curve was linear in the range of 0.5–150 μg L−1 with reasonable linearity (r2>0.9987). The limit of detection (LOD) based on S/N = 3 was 0.13 μg L−1 for 10 mL sample volumes. The limit of quantification (LOQ) based on S/N = 10 was 0.43 μg L−1 for 10 mL sample volumes. Finally, the applicability of the proposed method was evaluated by the extraction and determination of BPA in the real samples, and satisfactory results were obtained.

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Ruth Rodriguez ◽  
Elianna Castillo ◽  
Diana Sinuco

A simple and economic high-performance liquid chromatography (HPLC-UV-Vis) analytical method was validated for the quantitation of specific Bisphenol-A migration from baby feeding bottles. Overall and specific migration assays were done with different food simulating matrices using the filling method. Good linearity was obtained over the concentration range of 0.01–0.6 mg/kg. The limit of detection (LOD) and limit of quantification (LOQ) were 0.004 and 0.010 mg/kg, respectively. The repeatability of the method (%RSD, n=10) was between 89.5 and 99.0%, while recovery ranged from 83.2 to 98.4%. The method was applied to specific migration assays from baby feeding bottles purchased from different plastic producers in Colombia. The results show that, in a first migration assay, Bisphenol-A was not detectable in all samples. In a second migration test, Bisphenol-A concentrations were higher than the most restricted limit (0.05 mg/kg) with ethanol 95% and isooctane as food simulants.


2020 ◽  
Vol 8 (2) ◽  
pp. 1-7
Author(s):  
Ihsan M. Shaheed ◽  
Saadiyah A. Dhahir

The quinolizindine alkaloid compound, oxymatrine pesticide, was analysis in the river water samples collected from different agriculture areas in the Iraqi city of Kerbala and also in its formulation using developed reverse-phase high-performance liquid chromatography method. Acetonitrile:methanol (60:40 v/v) was chosen as mobile phase at pH (7.0), flow rate 0.5 mL/min, and 20 µL as volume injection. Modified ecological-friendly method, dispersive liquid-liquid microextraction, was used for the extraction of oxymatrine from water samples. Linearity study was constructed from 0.1 to 70 μg/mL at λmax 205 nm. The limit of detection and limit of quantification were 0.025 and 0.082 μg/mL, respectively, and the relative standard deviation (RSD) % was 0.518%. Three spiked levels of concentration (20.0, 40.0, and 70.0 μg/mL) were used for the validation method. The percentage recovery for the three spiked samples was ranged between 98.743 and 99.432 and the RSD% was between 0.051 and 0.202%, the formulation studies of oxymatrine between 99.487 and 99.798, and the RSD% was ranged from 0.045 to 0.057%. The developed method can be used accurately and selectively for the determination of oxymatrine in environmental samples and in the formulation.


2020 ◽  
Vol 17 (34) ◽  
pp. 1046-1054
Author(s):  
Ihsan Mahdi SHAHEED ◽  
Saadiyah Ahmed DHAHIR

The triazole, tebuconazole pesticide, was determined in its formulation and also in the river water samples collected from different agriculture areas in the Iraqui city of Kerbala using developed high-performance liquid chromatography method(HPLC) with UV-visible detection, The mobile composition phase was a mixture of acetonitrile:methanol (50:50 v/v) and the column was C18 (250 cm x 4.6 mm,5μm). Also modified dispersive liquidliquid microextraction (DLLME), which is regarded as an ecological -friendly method, was used for the extraction of tebuconazole from water samples using acetonitrile and chloroform as solvents extraction and dispersive agent, respectively. Linearity to maintain the calibration curve was achieved from (0.1-70) μg.mL-1 with a limit of detection(0.053) μg.mL-1 and limit of quantification (0.174) μg.mL-1. Three spiked levels of concentration (1.0, 5.0, and 10) μg.mL-1 were used for the validation of the method. The relative standard deviation (RSD%) was (0.294- 0.813)%, and the percentage recovery was (100.001-100.005). The formulation studies for two different concentrations (10 and 40) μg.mL-1, which prepared from tebuconazole formulation (Raxil ODS2 2%), gave acceptable percentage recovery between (98.956-99.833). The developed method can be used accurately for the determination of tebuconazole in water samples and in the formulation of tebuconazole effectively.


2019 ◽  
Vol 57 (7) ◽  
pp. 618-624
Author(s):  
Yi Tao ◽  
Xiaoping Zhou ◽  
Weidong Li ◽  
Baochang Cai

Abstract Fallopia multiflora is used for treatment of premature graying hair and blood deficiency. In this study, a quantitative method was developed for determination of five bioactive components (emodin, 2,3,5,4′-tetrahydroxy-stilbene- 2-Ο-β-d-glucoside, emodin-8-O-β-d-glucopyranoside, ω-hydroxyemodin and kaempferol) in raw and processed F. multiflora by using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry-based method. The sample handling procedure was optimized. Chromatographic separation was carried out on a Thermo Syncronis AQ-C18 UHPLC column with mobile phase consisting of 0.01% aqueous formic acid and acetonitrile. The method was interrogated in terms of linearity, precision, stability and recovery tests. All calibration curves displayed good linearity (R2 > 0.9992). The limit of detection and limit of quantification of these components ranged from 0.01 to 0.03 μg/mL and from 0.03 to 0.07 μg/mL, respectively. The average recoveries of these components were from 98.2 to 102.9% with relative standard deviation values from 0.8 to 2.9% for F. multiflora. The developed method can be applied to quality control of raw and processed F. multiflora.


2020 ◽  
pp. 1-8
Author(s):  
M. Pernica ◽  
J. Martiník ◽  
R. Boško ◽  
V. Zušťáková ◽  
K. Benešová ◽  
...  

The present study describes using molecularly imprinted polymer (MIP) technology for determination of patulin (PAT) and 5-hydroxymethylfurfural (5-HMF) in beverages by ultra-high performance liquid chromatography coupled to photodiode array (UPLC-PDA). PAT (4-hydroxy-4H-furo[3,2-c]pyran-2(6H)-one) is a mycotoxin produced by Penicillium fungi and Penicillium expansum is probably the most commonly encountered species that infects apples during their growth, harvest, storage or processing. The occurrence of PAT as a natural contaminant of apples is a worldwide problem. 5-HMF (also known as 5-(hydroxymethyl) furan-2-carbaldehyde), is formed in the Maillard reaction as well as during caramelisation. It is a good storage time-temperature marker and flavour indicator, especially in beverages such as wine, beer, but also cider and apple juice which may contain PAT. PAT and 5-HMF were separated within 2 min using a Luna Omega C18 column and the PDA detector wavelength was set to 276 nm. The validation parameters of the analytical method such as linearity, limit of detection, limit of quantification, accuracy and precision were tested. The calibration curves were linear at least in the range 50-1000 ng/ml with a good linearity (R2>0.999) for both analytes, the limit of detection and the limit of quantification for PAT and 5-HMF were in the range 4.9-6.6 and 16.1-21.8 μg/l, respectively. The recoveries of the selected analyte were in the range 61.9-109.0% with a precision of <8.2% (relative standard deviation (RSD)) for PAT and in the range 50.8-98.0% with a precision of <10.0% (RSD) for 5-HMF. The validated procedure was successfully applied for the analysis of PAT and 5-HMF in beverages from retail shops.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 624
Author(s):  
Fernanda Vilarinho ◽  
Antia Lestido-Cardama ◽  
Raquel Sendón ◽  
Ana Rodríguez Bernaldo de Quirós ◽  
Maria de Fátima Vaz ◽  
...  

Bisphenol A (BPA) is one of the chemicals used to produce both polycarbonate plastics and epoxy resin coatings. Research has shown that small amounts of BPA can migrate into the foods and beverages enclosed in these types of containers. In this research, an analytical method based on high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed and validated for the determination of BPA in canned vegetables. The results were confirmed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was performed, to identify the coating material of each tin can. Nineteen cans of vegetables were taken as study samples (eleven samples from the Spanish market, and eight samples from the Portuguese market). Excellent linear correlation (r2 = 0.9999) was observed over the range of 0.01 to 0.25 mg/L. Limit of detection (LOD) and limit of quantification (LOQ) values were calculated to be 0.005 mg/kg and 0.01 mg/kg, respectively. Good recoveries, between 72% and 90% were obtained at three different levels of concentration (RSD% = 4.6). BPA was not detected in the samples. The proposed HPLC-FLD was found to be suitable for the determination of BPA in canned vegetables.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 87 ◽  
Author(s):  
Wenbo Guo ◽  
Kai Fan ◽  
Dongxia Nie ◽  
Jiajia Meng ◽  
Qingwen Huang ◽  
...  

A simple and reliable analytical method for the simultaneous determination of alternariol (AOH), altenuene (ALT), tentoxin (TEN), altenusin (ALS), tenuazonic acid (TeA), and alternariol monomethyl ether (AME) in grapes was developed by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure with the extraction by acetonitrile and purification by sodium chloride (0.5 g) and anhydrous magnesium sulfate (0.5 g) was established to recover the six Alternaria toxins. After validation by determining the linearity (R2 > 0.99), recovery (77.8–101.6%), sensitivity (limit of detection in the range of 0.03–0.21 μg kg−1, and limit of quantification in the range of 0.09–0.48 μg kg−1), and precision (relative standard deviation (RSD) ≤ 12.9%), the analytical method was successfully applied to reveal the contamination state of Alternaria toxins in grapes. Among 56 grape samples, 40 (incidence of 71.4%) were contaminated with Alternaria toxins. TEN was the most frequently found mycotoxin (37.5%), with a concentration range of 0.10–1.64 μg kg−1, followed by TeA (28.6%) and AOH (26.8%). ALT (10.7%), AME (3.6%), and ALS (5.4%) were also detected in some samples. To the best of our knowledge, this is the first report about the Alternaria toxins contamination in grapes in China.


2021 ◽  
Vol 50 (5) ◽  
pp. 1297-1307
Author(s):  
Sohaib Jumaah Owaid Luhaib ◽  
Noorfatimah Yahaya ◽  
Anas Alshishani ◽  
Maizatul Najwa Jajuli ◽  
Mazidatulakmam Miskam

A new analytical method based on vortex-assisted liquid-liquid microextraction with back extraction (VALLME-BE) coupled with high performance liquid chromatography was developed for the simultaneous determination of antidiabetic drugs; repaglinide, glibenclamide, and glimepiride in water samples. Chromatographic separation was achieved using C18 column (250 × 4.6 mm × 5 µm) and methanol-phosphate buffer (pH3.7) in the ratio of 70:30 v/v as a mobile phase at a flow rate of 1 mLmin-1. VALLME-BE was performed using 200 μL of n-octane dispersed into the aqueous sample (10 mL) with the aid of vortexing agitation. Then, the analytes were back-extracted from the organic solvent to 0.05 M NaOH (40 µL). Under these conditions, enrichment factor of 155-fold was achieved. The developed VALLME-BE method showed excellent linearity in the range of 30 to 1000 µgL-1 with limit of detection (LOD) of 0.41-1.66 µgL-1 and limit of quantification (LOQ) of 1.38-5.54. 41-1.66 µgL-1. VALLME-BE was applied for the determination of repaglinide, glibenclamide and glimepiride in water samples with the recoveries ranged from 83-109%. The relative standard deviation for inter-day and intra-day precision was less than 9.9%.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.


Sign in / Sign up

Export Citation Format

Share Document