scholarly journals A Multi-GPU Parallel Algorithm in Hypersonic Flow Computations

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jianqi Lai ◽  
Hua Li ◽  
Zhengyu Tian ◽  
Ye Zhang

Computational fluid dynamics (CFD) plays an important role in the optimal design of aircraft and the analysis of complex flow mechanisms in the aerospace domain. The graphics processing unit (GPU) has a strong floating-point operation capability and a high memory bandwidth in data parallelism, which brings great opportunities for CFD. A cell-centred finite volume method is applied to solve three-dimensional compressible Navier–Stokes equations on structured meshes with an upwind AUSM+UP numerical scheme for space discretization, and four-stage Runge–Kutta method is used for time discretization. Compute unified device architecture (CUDA) is used as a parallel computing platform and programming model for GPUs, which reduces the complexity of programming. The main purpose of this paper is to design an extremely efficient multi-GPU parallel algorithm based on MPI+CUDA to study the hypersonic flow characteristics. Solutions of hypersonic flow over an aerospace plane model are provided at different Mach numbers. The agreement between numerical computations and experimental measurements is favourable. Acceleration performance of the parallel platform is studied with single GPU, two GPUs, and four GPUs. For single GPU implementation, the speedup reaches 63 for the coarser mesh and 78 for the finest mesh. GPUs are better suited for compute-intensive tasks than traditional CPUs. For multi-GPU parallelization, the speedup of four GPUs reaches 77 for the coarser mesh and 147 for the finest mesh; this is far greater than the acceleration achieved by single GPU and two GPUs. It is prospective to apply the multi-GPU parallel algorithm to hypersonic flow computations.

2013 ◽  
Vol 791-793 ◽  
pp. 1252-1255
Author(s):  
Wei Cao ◽  
Chuan Fu Xu ◽  
Zheng Hua Wang

The high-order schemes have attracted more and more attention in computational fluid dynamics (CFD) simulations. As a kind of high-order schemes, weighted compact nonlinear schemes (WCNSs) have been widely applied. In recent years, the highly parallel graphics processing unit (GPU) is rapidly gaining maturity as a powerful engine for high performance computer. This paper studies the heterogeneous parallel computation and implementation of a high-order CFD program on Tianhe-1A supercomputer system. The CFD program is intended for the solution of the Navier-Stokes equations on multi-block Cartesian meshes for aerodynamics research. The solver utilizes the high-order WCNS scheme for space discretization and Jacobi iteration method for time discretization. The performance analyses show that the single-GPU solver achieves about 8× speed-ups relative to a serial computation on a CPU core.


Author(s):  
Nasim Chitsaz ◽  
Kamran Siddiqui ◽  
Romeo Marian ◽  
Javaan S. Chahl

Abstract In this study, computational fluid dynamics analysis was performed on a three-dimensional model of a Libellulidae wing to determine aerodynamic performance in gliding flight. The wing is comprised of various corrugated features alongside the spanwise and chordwise directions, as well as twist. The detailed features of real 3D dragonfly wing models, including all the corrugations through both span and chord, have not been considered in the past for a detailed aerodynamic analysis. The simulations were conducted by solving the Navier-Stokes equations to demonstrate gliding performance over a range of angles of attack at low Reynolds numbers. The numerical model was validated against experimental data obtained from a fabricated corrugated wing model using particle image velocimetry. The numerical results demonstrate that bio-inspired wings with corrugations compared to flat profile wings generate more lift with lower drag, trapping the vortices in the valleys of wing corrugation leading to delayed flow separation and delayed stall. The experimental and numerical results demonstrate that the methodology presented in this study can be used to measure bio-inspired 3D wing flow characteristics, including the influence of complex corrugations on aerodynamic performance. These findings contribute to the advancement of knowledge required for designing an optimized bioinspired micro air vehicle.


2021 ◽  
Vol 87 (5) ◽  
pp. 363-373
Author(s):  
Long Chen ◽  
Bo Wu ◽  
Yao Zhao ◽  
Yuan Li

Real-time acquisition and analysis of three-dimensional (3D) human body kinematics are essential in many applications. In this paper, we present a real-time photogrammetric system consisting of a stereo pair of red-green-blue (RGB) cameras. The system incorporates a multi-threaded and graphics processing unit (GPU)-accelerated solution for real-time extraction of 3D human kinematics. A deep learning approach is adopted to automatically extract two-dimensional (2D) human body features, which are then converted to 3D features based on photogrammetric processing, including dense image matching and triangulation. The multi-threading scheme and GPU-acceleration enable real-time acquisition and monitoring of 3D human body kinematics. Experimental analysis verified that the system processing rate reached ∼18 frames per second. The effective detection distance reached 15 m, with a geometric accuracy of better than 1% of the distance within a range of 12 m. The real-time measurement accuracy for human body kinematics ranged from 0.8% to 7.5%. The results suggest that the proposed system is capable of real-time acquisition and monitoring of 3D human kinematics with favorable performance, showing great potential for various applications.


Author(s):  
Aaron F. Shinn ◽  
S. P. Vanka

A semi-implicit pressure based multigrid algorithm for solving the incompressible Navier-Stokes equations was implemented on a Graphics Processing Unit (GPU) using CUDA (Compute Unified Device Architecture). The multigrid method employed was the Full Approximation Scheme (FAS), which is used for solving nonlinear equations. This algorithm is applied to the 2D driven cavity problem and compared to the CPU version of the code (written in Fortran) to assess computational speed-up.


Author(s):  
Hui Huang ◽  
Jian Chen ◽  
Blair Carlson ◽  
Hui-Ping Wang ◽  
Paul Crooker ◽  
...  

Due to enormous computation cost, current residual stress simulation of multipass girth welds are mostly performed using two-dimensional (2D) axisymmetric models. The 2D model can only provide limited estimation on the residual stresses by assuming its axisymmetric distribution. In this study, a highly efficient thermal-mechanical finite element code for three dimensional (3D) model has been developed based on high performance Graphics Processing Unit (GPU) computers. Our code is further accelerated by considering the unique physics associated with welding processes that are characterized by steep temperature gradient and a moving arc heat source. It is capable of modeling large-scale welding problems that cannot be easily handled by the existing commercial simulation tools. To demonstrate the accuracy and efficiency, our code was compared with a commercial software by simulating a 3D multi-pass girth weld model with over 1 million elements. Our code achieved comparable solution accuracy with respect to the commercial one but with over 100 times saving on computational cost. Moreover, the three-dimensional analysis demonstrated more realistic stress distribution that is not axisymmetric in hoop direction.


2011 ◽  
Vol 110-116 ◽  
pp. 2740-2745
Author(s):  
Kirana Kumara P. ◽  
Ashitava Ghosal

Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.


2000 ◽  
Author(s):  
M. Singh ◽  
P. K. Panigrahi ◽  
G. Biswas

Abstract A numerical study of rib augmented cooling of turbine blades is reported in this paper. The time-dependent velocity field around a pair of symmetrically placed ribs on the walls of a three-dimensional rectangular channel was studied by use of a modified version of Marker-And-Cell algorithm to solve the unsteady incompressible Navier-Stokes and energy equations. The flow structures are presented with the help of instantaneous velocity vector and vorticity fields, FFT and time averaged and rms values of components of velocity. The spanwise averaged Nusselt number is found to increase at the locations of reattachment. The numerical results are compared with available numerical and experimental results. The presence of ribs leads to complex flow fields with regions of flow separation before and after the ribs. Each interruption in the flow field due to the surface mounted rib enables the velocity distribution to be more homogeneous and a new boundary layer starts developing downstream of the rib. The heat transfer is primarily enhanced due to the decrease in the thermal resistance owing to the thinner boundary layers on the interrupted surfaces. Another reason for heat transfer enhancement can be attributed to the mixing induced by large-scale structures present downstream of the separation point.


2020 ◽  
Vol 10 (7) ◽  
pp. 2359
Author(s):  
Sajad Mohammadi ◽  
Hamidreza Karami ◽  
Mohammad Azadifar ◽  
Farhad Rachidi

An open accelerator (OpenACC)-aided graphics processing unit (GPU)-based finite difference time domain (FDTD) method is presented for the first time for the 3D evaluation of lightning radiated electromagnetic fields along a complex terrain with arbitrary topography. The OpenACC directive-based programming model is used to enhance the computational performance, and the results are compared with those obtained by using a CPU-based model. It is shown that OpenACC GPUs can provide very accurate results, and they are more than 20 times faster than CPUs. The presented results support the use of OpenACC not only in relation to lightning electromagnetics problems, but also to large-scale realistic electromagnetic compatibility (EMC) applications in which computation time efficiency is a critical factor.


Author(s):  
Xiaojun Jiang ◽  
Yi Li ◽  
Zhaohui He ◽  
Cui Baoling ◽  
Wenlong Dong

The three-dimensional flow field characteristics are obtained by performing numerical simulation of flow in a lobe pump with twisted rotors. The relationship between the dynamic flow structure and the flow fluctuation is explored. Actually, the viscous incompressible Navier-Stokes equations are solved within an unsteady flow model. The dynamic mesh technique is applied to obtain the dynamic flow structure. By comparing the simulated results of straight rotor with those of twisted rotor, the effect of rotor shape on the flow fluctuation was revealed. Finally, the impact of the lobes number of rotors on flow pulsations is discussed. The results show that there is an intrinsic relationship between the flow fluctuation and the vortex in the lobe pump. The use of twisted rotors can effectively improve the internal flow characteristics of lobe pump and reduce flow fluctuation. With the increase of the number of lobes, the lobe pump output is more stable and capacity has been improved.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Piroz Zamankhan

The air-water mixture from an artificially aerated spillway flowing down to a canyon may cause serious erosion and damage to both the spillway surface and the environment. The location of an aerator, its geometry, and the aeration flow rate are important factors in the design of an environmentally friendly high-energy spillway. In this work, an analysis of the problem based on physical and computational fluid dynamics (CFD) modeling is presented. The numerical modeling used was a large eddy simulation technique (LES) combined with a discrete element method. Three-dimensional simulations of a spillway were performed on a graphics processing unit (GPU). The result of this analysis in the form of design suggestions may help diminishing the hazards associated with cavitation.


Sign in / Sign up

Export Citation Format

Share Document