scholarly journals Replication-Based Data Dissemination in Connected Internet of Vehicles

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Xiying Fan ◽  
Chuanhe Huang ◽  
Junyu Zhu ◽  
Bin Fu

Due to the dynamically changing topology of Internet of Vehicles (IoV), it is a challenging issue to achieve efficient data dissemination in IoV. This paper considers strongly connected IoV with a number of heterogenous vehicular nodes to disseminate information and studies distributed replication-based data dissemination algorithms to improve the performance of data dissemination. Accordingly, two data replication algorithms, a deterministic algorithm and a distributed randomised algorithm, are proposed. In the proposed algorithms, the number of message copies spread in the network is limited and the network will be balanced after a series of average operations among the nodes. The number of communication stages needed for network balance shows the complexity of network convergence as well as network convergence speed. It is proved that the network can achieve a balanced status after a finite number of communication stages. Meanwhile, the upper and lower bounds of the time complexity are derived when the distributed randomised algorithm is applied. Detailed mathematical results show that the network can be balanced quickly in complete graph; thus highly efficient data dissemination can be guaranteed in dense IoV. Simulation results present that the proposed randomised algorithm outperforms the present schemes in terms of transmissions and dissemination delay.

2022 ◽  
Vol 22 (1) ◽  
pp. 1-18
Author(s):  
Chen Chen ◽  
Lei Liu ◽  
Shaohua Wan ◽  
Xiaozhe Hui ◽  
Qingqi Pei

As a key use case of Industry 4.0 and the Smart City, the Internet of Vehicles (IoV) provides an efficient way for city managers to regulate the traffic flow, improve the commuting performance, reduce the transportation facility cost, alleviate the traffic jam, and so on. In fact, the significant development of Internet of Vehicles has boosted the emergence of a variety of Industry 4.0 applications, e.g., smart logistics, intelligent transforation, and autonomous driving. The prerequisite of deploying these applications is the design of efficient data dissemination schemes by which the interactive information could be effectively exchanged. However, in Internet of Vehicles, an efficient data scheme should adapt to the high node movement and frequent network changing. To achieve the objective, the ability to predict short-term traffic is crucial for making optimal policy in advance. In this article, we propose a novel data dissemination scheme by exploring short-term traffic prediction for Industry 4.0 applications enabled in Internet of Vehicles. First, we present a three-tier network architecture with the aim to simply network management and reduce communication overheads. To capture dynamic network changing, a deep learning network is employed by the controller in this architecture to predict short-term traffic with the availability of enormous traffic data. Based on the traffic prediction, each road segment can be assigned a weight through the built two-dimensional delay model, enabling the controller to make routing decisions in advance. With the global weight information, the controller leverages the ant colony optimization algorithm to find the optimal routing path with minimum delay. Extensive simulations are carried out to demonstrate the accuracy of the traffic prediction model and the superiority of the proposed data dissemination scheme for Industry 4.0 applications.


1995 ◽  
Vol 05 (02) ◽  
pp. 275-280 ◽  
Author(s):  
BEATE BOLLIG ◽  
MARTIN HÜHNE ◽  
STEFAN PÖLT ◽  
PETR SAVICKÝ

For circuits the expected delay is a suitable measure for the average case time complexity. In this paper, new upper and lower bounds on the expected delay of circuits for disjunction and conjunction are derived. The circuits presented yield asymptotically optimal expected delay for a wide class of distributions on the inputs even when the parameters of the distribution are not known in advance.


Author(s):  
Soochan Hwang ◽  
Sang-Young Cho ◽  
Taehyung Wang ◽  
Phillip C.-Y. Sheu

This paper describes a 3-D visualization method based on the concept of characteristic views (CVs). The idea of characteristic views was derived based on the observation that the infinite possible views of a 3-D object can be grouped into a finite number of equivalence classes so that within each class all the views are isomorphic in the sense that they have the same line-junction graphs. To visualize the changes of scenes in real time, the BSP tree algorithm is known to be efficient in a static environment in which the viewpoint can be changed easily. However, if a scene consists of many objects and each object consists of many polygons, the time complexity involved in traversing a BSP tree increases rapidly so that the original BSP tree algorithm may not be efficient. The method proposed in this paper is object-oriented in the sense that, for all viewpoints, at the preprocessing stage the ordering for displaying the objects is determined. At run time, the objects are displayed based on a pre-calculated ordering according to the viewpoint. In addition, a CV is used as a basic 2-D projected image of a 3-D object.


2018 ◽  
Vol 25 (6) ◽  
pp. 3419-3439 ◽  
Author(s):  
Ramin Yarinezhad ◽  
Seyyed Naser Hashemi

Sign in / Sign up

Export Citation Format

Share Document