scholarly journals Green Synthesis of Highly Luminescent Carbon Quantum Dots from Lemon Juice

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bui Thi Hoan ◽  
Phuong Dinh Tam ◽  
Vuong-Hung Pham

Highly luminescent carbon dots (C-dots) were synthesized by the one-pot simple hydrothermal method directly from lemon juice using different temperatures, time, aging of precursors, and diluted solvents to control the luminescence of C‐dots. The obtained C-dots were characterized by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectrophotometry, dynamic light scattering, ultraviolet-visible spectrophotometry, and photoluminescent spectrophotometry. The results show that C‐dots had strong green light emission with quantum yield in the range of 14.86 to 24.89% as a function of hydrothermal temperatures. Furthermore, light emission that is dependent on hydrothermal time, aging of precursor, and diluted solvent was observed. These results suggest that the C‐dots have potential application in optoelectronics and bioimaging.

NANO ◽  
2018 ◽  
Vol 13 (06) ◽  
pp. 1850063 ◽  
Author(s):  
Jinhua Zhang ◽  
Huiyue Qian ◽  
Wencheng Liu ◽  
Hao Chen ◽  
Yang Qu ◽  
...  

A heterostructural composite composed of g-C3N4 and Bi2O3 was achieved by the one-pot and thermal-induced polycondensation method using melamine and Bi(NO[Formula: see text] as precursor at 550[Formula: see text]C under air atmosphere. The crystalline phase, components and morphologies of the as-prepared composites were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Besides, the photocatalytic activity of composites was evaluated by degrading RhB aqueous solution at room temperature under visible light irradiation. Compared with bulk g-C3N4, the photocatalytic efficiency of the 0.5% Bi2O3/g-C3N4 (Bi–CN) was increased by up to four times. The introduction of Bi2O3 enhances not only the light absorption ability, but also the separation of photogenerated electron–hole pairs.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Nuengruethai Ekthammathat ◽  
Titipun Thongtem ◽  
Anukorn Phuruangrat ◽  
Somchai Thongtem

Aligned hexagonal ZnO nanorods on pure Zn foils were hydrothermally synthesized in 30 mL solutions containing 0.05–0.50 g KOH. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. In this research, wurtzite hexagonal ZnO nanorods grown along the [002] direction with green light emission at 541 nm caused by singly ionized oxygen vacancies inside were detected.


2020 ◽  
Author(s):  
Jingtao Zhang ◽  
Shurui Liu ◽  
Qinwen Wang ◽  
Jing Yao ◽  
Yin Liu ◽  
...  

Abstract In this study, we synthesized a series of rhodium-modified and Ti3+ self-doped TiO2 (Rh/Ti3+-TiO2) nanocomposites via the one-pot method. We prepared samples of Rh/Ti3+-TiO2, which were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Electron Spin Resonance (ESR), and Uv-vis-NIR analysis. We found that the ability of TiO2 to absorb near-infrared and visible light was significantly improved by the Rh/Ti3+-TiO2 nanocomposites, due to Ti3+ doping as well as modification of Rh. The disinfection properties of these materials were tested using Staphylococcus aureus under visible light and NIR light excitations. The synthesized photocatalyst was found to exhibit significantly enhanced photocatalytic inactivation of S. aureus under both visible and NIR light irradiation, as compared to pure TiO2. This was particularly true with respect to the 5% Rh/Ti3+-TiO2 sample. Our results suggest that the Rh/Ti3+-TiO2 composites could extend the range of optical response range of pure nano TiO2 materials to the Vis -NIR region.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shu-Ru Chung ◽  
Kuan-Wen Wang ◽  
Hong-Shuo Chen

We present a facile one-pot synthesis to prepare ternaryZnxCd1-xSe(x= 0.2, 0.5, 0.8, and 1) nanocrystals (NCs) with high emission quantum yield (QY, 45~89%). The effect of Zn content (x) ofZnxCd1-xSeNCs on their physical properties is investigated. The NCs have a particle size of 3.2 nm and face centered cubic structure. However, the actual compositions of the NCs are Zn0.03Cd0.97Se, Zn0.11Cd0.89Se, and Zn0.38Cd0.62Se when Zn content is 0.2, 0.5, and 0.8, respectively. In terms of the optical properties, the emission wavelength shifts from 512 to 545 nm with increasing Zn content from 0 to 0.8 while the QY changes from 89 to 45, respectively. Partial replacement of Cd by Zn is beneficial to improve the QY of Zn0.2and Zn0.5NCs. The optical properties of ternary NCs are affected by compositional effect rather than particle size effect.


2021 ◽  
Vol 119 (24) ◽  
pp. 241103
Author(s):  
Miao Wang ◽  
Yu Lin ◽  
Jue-Min Yi ◽  
De-Yao Li ◽  
Jian-Ping Liu ◽  
...  

1998 ◽  
Vol 27 (9) ◽  
pp. 909-910 ◽  
Author(s):  
Haipeng Zheng ◽  
Ruifeng Zhang ◽  
Ying Wu ◽  
Jiacong Shen

2018 ◽  
Vol 43 (3-4) ◽  
pp. 286-299 ◽  
Author(s):  
Osman Asheri ◽  
Sayyed Mostafa Habibi-Khorassani ◽  
Mehdi Shahraki

The kinetics of the reaction between para-substituted anilines and dimethyl acetylenedicarboxylate (DMAD) with derivatives of benzaldehyde for the one-pot formation of 3,4,5-substituted furan-2(5 H)-ones in the presence of lactic acid as a catalyst have been studied spectrophotometrically at different temperatures. A mechanism involving four steps was proposed for the reactions, all of which followed second-order kinetics. The partial orders with respect to substituted aniline and DMAD were one and one and the reactions revealed zero-order kinetics for benzaldehyde and its derivatives. Changing of substituents on benzaldehyde left rates of reaction unaffected. However, various substituents on aniline showed that para electron-withdrawing groups decreased the rate of reaction. According to investigation of an isokinetic relationship, a common mechanism exists for all studied substituents and a general mechanism can be formulated. Kinetic values ( k and Ea) and associated activation parameters (Δ G‡, Δ S‡ and Δ H‡) of the reactions were determined.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Qianchun Zhang ◽  
Xiaolan Zhang ◽  
Linchun Bao ◽  
Yun Wu ◽  
Li Jiang ◽  
...  

Ginkgo leaves were used as precursors for the hydrothermal synthesis of carbon quantum dots (CQDs), which were subsequently characterized by transmission electron microscopy as well as Fourier-transform infrared, X-ray powder diffraction, and X-ray photoelectron spectroscopy. The prepared CQDs exhibited a fluorescence quantum yield of 11% and superior water solubility and fluorescence stability, as well as low cytotoxicities and excellent biocompatibilities with A549 and HeLa cells; these CQDs were also used to bioimage HeLa cells. Moreover, owing to the experimental observation that Hg2+ quenches the fluorescence of the CQDs in a specific and sensitive manner, we developed a method for the detection of Hg2+ using this fluorescence sensor. The sensor exhibited a linear range for Hg2+ of 0.50–20 μM, with an excellent coefficient of determination (R2 = 0.9966) and limit of detection (12.4 nM). In practice, the proposed method was shown to be highly selective and sensitive for the monitoring of Hg2+ in lake water and serum samples.


Sign in / Sign up

Export Citation Format

Share Document