scholarly journals PPIA, HPRT1, and YWHAZ Genes Are Suitable for Normalization of mRNA Expression in Long-Term Expanded Human Mesenchymal Stem Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Ryoung-Hoon Jeon ◽  
Won-Jae Lee ◽  
Young-Bum Son ◽  
Dinesh Bharti ◽  
Sharath Belame Shivakumar ◽  
...  

Long-term expansion of mesenchymal stem cells (MSCs) under defined culture conditions is necessary in human stem cell therapy. However, it alters the characteristics of MSCs. Since quantitative real time polymerase chain reaction (qRT-PCR) is widely used as one of the key analytical methods for comparative characterization, the validation of reference genes (RGs) for normalization under each experimental condition is important to achieve reliable qRT-PCR results. Therefore, the most stable RGs for long-term expanded bone marrow- and umbilical cord blood-derived MSCs (BM-MSCs and UCB-MSCs) under defined culture conditions for up to 20 passages were evaluated. The more apparent alterations in characteristics such as differentiation capacity, proliferation, senescence, and the expression of RGs were noted in BM-MSCs than UCB-MSCs during long-term expansion. The RG validation programs (GeNorm and NormFinder) suggested that PPIA, HPRT1, and YWHAZ were suitable for normalization in qRT-PCR regardless of MSC types and long-term culture expansion, and the traditional RGs (ACTB and GAPDH) were less stable in long-term expanded MSCs. In addition, the use of these RGs for normalization of OCT4 expression in long-term expanded BM-MSCs showed that a less stable RG (GAPDH) showed contrasting data compared to other RGs. Therefore, the use of RGs such as PPIA, HPRT1, and YWHAZ for normalization in qRT-PCR experiments is highly recommended for long-term expanded MSCs to generate accurate and reliable data.

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Anirban Mandal ◽  
Ajeet Kumar Jha ◽  
Dew Biswas ◽  
Shyamal Kanti Guha

Abstract Background The study was conducted to assess the characterization, differentiation, and in vitro cell regeneration potential of canine mesenteric white adipose tissue-derived mesenchymal stem cells (AD-MSCs). The tissue was harvested through surgical incision and digested with collagenase to obtain a stromal vascular fraction. Mesenchymal stem cells isolated from the stromal vascular fraction were characterized through flow cytometry and reverse transcription-polymerase chain reaction. Assessment of cell viability, in vitro cell regeneration, and cell senescence were carried out through MTT assay, wound healing assay, and β-galactosidase assay, respectively. To ascertain the trilineage differentiation potential, MSCs were stained with alizarin red for osteocytes, alcian blue for chondrocytes, and oil o red for adipocytes. In addition, differentiated cells were characterized through a reverse transcription-polymerase chain reaction. Results We observed the elongated, spindle-shaped, and fibroblast-like appearance of cells after 72 h of initial culture. Flow cytometry results showed positive expression for CD44, CD90, and negative expression for CD45 surface markers. Population doubling time was found 18–24 h for up to the fourth passage and 30±0.5 h for the fifth passage. A wound-healing assay was used to determine cell migration rate which was found 136.9 ± 4.7 μm/h. We observed long-term in vitro cell proliferation resulted in MSC senescence. Furthermore, we also found that the isolated cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Conclusions Mesenteric white adipose tissue was found to be a potential source for isolation, characterization, and differentiation of MSCs. This study might be helpful for resolving the problems regarding the paucity of information concerning the basic biology of stem cells. The large-scale use of AD-MSCs might be a remedial measure in regenerative medicine.


2015 ◽  
Vol 24 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Ji Wang ◽  
Vera Huang ◽  
Lin Ye ◽  
Alicia Bárcena ◽  
Guiting Lin ◽  
...  

2018 ◽  
Author(s):  
Sanjay K. Kureel ◽  
Pankaj Mogha ◽  
Akshada Khadpekar ◽  
Vardhman Kumar ◽  
Rohit Joshi ◽  
...  

AbstractHuman mesenchymal stem cells (hMSCs), when cultured on tissue culture plate (TCP) for in vitro expansion, they spontaneously lose their proliferative capacity and multi-lineage differentiation potential. They also lose their distinct spindle morphology and become large and flat. After a certain number of population doubling, they enter into permanent cell cycle arrest, called senescence. This is a major roadblock for clinical use of hMSCs which demands large number of cells. A cell culture system is needed which can maintain the stemness of hMSCs over long term passages yet simple to use. In this study, we explore the role of substrate rigidity in maintaining stemness. hMSCs were serially passaged on TCP and 5 kPa poly-acrylamide gel for 20 population doubling. It was found that while on TCP, cell growth reached a plateau at cumulative population doubling (CPD) = 12.5, on 5 kPa gel, they continue to proliferate linearly till we monitored (CPD = 20). We also found that while on TCP, late passage MSCs lost their adipogenic potential, the same was maintained on soft gel. Cell surface markers related to MSCs were also unaltered. We demonstrated that this maintenance of stemness was correlated with delay in onset of senescence, which was confirmed by β-gal assay and by differential expression of vimentin, Lamin A and Lamin B. As preparation of poly-acrylamide gel is a simple, well established, and well standardized protocol, we believe that this system of cell expansion will be useful in therapeutic and research applications of hMSCs.One Sentence SummaryhMSCs retain their stemness when expanded in vitro on soft polyacrylamide gel coated with collagen by delaying senescence.Significance StatementFor clinical applications, mesenchymal stem cells (MSCs) are required in large numbers. As MSCs are available only in scarcity in vivo, to fulfill the need, extensive in vitro expansion is unavoidable. However, on expansion, they lose their replicative and multi-lineage differentiation potential and become senescent. A culture system that can maintain MSC stemness on long-term expansion, without compromising the stemness, is need of the hour. In this paper, we identified polyacrylamide (PAA) hydrogel of optimum stiffness that can be used to maintain stemness of MSCs during in vitro long term culture. Large quantity of MSCs thus grown can be used in regenerative medicine, cell therapy, and in treatment of inflammatory diseases.


2011 ◽  
Vol 55 (2) ◽  
pp. 181-187 ◽  
Author(s):  
Sumiyo Mimura ◽  
Naohiro Kimura ◽  
Mitsuhi Hirata ◽  
Daiki Tateyama ◽  
Midori Hayashida ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Stefano Testa ◽  
Carles Sánchez Riera ◽  
Ersilia Fornetti ◽  
Federica Riccio ◽  
Claudia Fuoco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document