scholarly journals Compilation and Application of UMAT for Mechanical Properties of Heterogeneous Metal Welded Joints in Nuclear Power Materials

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
He Xue ◽  
Yueqi Bi ◽  
Shuai Wang ◽  
Jianlong Zhang ◽  
Siyu Gou

For the problem of mechanical properties of heterogeneous dissimilar metal welded joints, when analyzed by the finite element method, it is usually simplified into a “sandwich” material structure model. However, the mechanical properties of materials in different regions of the “sandwich” material mechanics model are different, and there will be mutations at the material interface. In order to accurately describe the mechanical properties of welded joints, the constitutive equations of dissimilar metal welded joint materials were compiled, and the constitutive equations of inhomogeneous materials whose material mechanical properties were continuously changed with space coordinates were established. The ABAQUS software was used to establish the “sandwich” model and the continuous transition model. The model is used to compare and analyze the crack tip stress distribution of different yield strength mismatch coefficients. The results show that the continuous transition material model eliminates the mutation of the “sandwich” model at the material interface and achieves the continuous change of the mechanical properties of the material. For the longitudinal crack, under the influence of different mismatch coefficients, the crack tip stress field of the transitional material model is deflected toward the low yield strength side. The compilation of constitutive equations for continuous transition materials of dissimilar metal welded joints provides a basis for the safety evaluation of dissimilar metal welded joints.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
He Xue ◽  
Yuman Sun ◽  
Shun Zhang ◽  
Rehmat Bashir ◽  
Youjun Zhao ◽  
...  

The mechanical characteristic at the crack tip is one of the main factors affecting the stress corrosion cracking (SCC) in dissimilar metal welded joints (DMWJs). In this research, to evaluate the effect of heterogeneous material properties on the mechanical characteristic at the crack tip of DMWJs accurately, a heterogeneous material model of the SA508 Cl.3-Alloy 52M DMWJ was established based on USDFLD subroutine in ABAQUS. The comparison of the traditional “Sandwich” material model with the heterogeneous material properties, stress-strain conditions, and the plastic zone around the crack tip at the interference zone has been analyzed by the finite element method (FEM). The results indicated that the heterogeneous material model could characterize the mechanical properties of the SA508 Cl.3-Alloy 52M DMWJs accurately. In addition, the crack at the interface zone between materials will deflect along with the weld metal in two material models.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4145
Author(s):  
He Xue ◽  
Zheng Wang ◽  
Shuai Wang ◽  
Jinxuan He ◽  
Hongliang Yang

Dissimilar metal welded joints (DMWJs) possess significant localized mechanical heterogeneity. Using finite element software ABAQUS with the User-defined Material (UMAT) subroutine, this study proposed a constitutive equation that may be used to express the heterogeneous mechanical properties of the heat-affected and fusion zones at the interfaces in DMWJs. By eliminating sudden stress changes at the material interfaces, the proposed approach provides a more realistic and accurate characterization of the mechanical heterogeneity in the local regions of DMWJs than existing methods. As such, the proposed approach enables the structural integrity of DMWJs to be analyzed in greater detail.


2011 ◽  
Vol 02 (08) ◽  
pp. 1027-1032
Author(s):  
George A. Papadopoulos ◽  
Elen B. Bouloukou ◽  
Elen G. Papadopoulou

2017 ◽  
Vol 754 ◽  
pp. 206-209 ◽  
Author(s):  
Lucie Malíková ◽  
Stanislav Seitl

A simplified model of a crack approaching a bi-material interface is modelled by means of the finite element method in order to investigate the significance of the higher-order terms of the Williams expansion for the proper approximation of the opening crack-tip stress near the bi-material interface. The discussion on results is presented and the importance of the higher-order terms proved.


1988 ◽  
Vol 110 (3) ◽  
pp. 171-176
Author(s):  
Y. Nakano ◽  
Y. Saito ◽  
K. Amano ◽  
M. Koda ◽  
Y. Sannomiya ◽  
...  

This paper describes the metallurgical approaches for producing 415MPa and 460MPa yield strength offshore structural steel plates and the mechanical properties of the steel plates and their welded joints. A thermo-mechanical control process (TMCP) was adopted to manufacture YP415MPa and YP460MPa steel plates with weldability comparable to conventional YP355MPa steel plates. The Charpy impact and CTOD tests of the steel plates and their welded joints proved to be very good.


2013 ◽  
Vol 446-447 ◽  
pp. 312-315
Author(s):  
Ramaraju Ramgopal Varma ◽  
Abdullah Bin Ibrahim ◽  
B. Ravinder Reddy

The present research paper aims in evaluating the strength of the welded AA6351 alloy plates of 6 mm thick by using friction stir welding technique at different rotational speeds The applied welding technique is capable of achieving the mechanical properties of the alloy close to that of the original alloy. In the present investigation, the speeds of the spindle were varied from 1100 rpm to 1500 rpm with a constant transverse speed of 20 mm/min. The tensile strength of the joints is determined by an universal testing machine. The results from the present investigation show that the values of the yield strength were very much closer to the values of the AA6351Alloy prior to welding. It has been found from the experiments that the strength of the joints increases with the increase in the rotational speed; however, the same is decreasing after achieving certain speed.


Sign in / Sign up

Export Citation Format

Share Document