scholarly journals Fracture properties and crack tip constraint quantification of 321/690 dissimilar metal girth welded joints by using miniature SENB specimens

Author(s):  
Bao Chen ◽  
Sun Yongduo ◽  
Wu Yuanjun ◽  
Wang Kaiqing ◽  
Wang Li ◽  
...  
Author(s):  
Xin Wang ◽  
Qing Gao

It has been observed that the loss of crack tip constraint leads to enhanced resistance to both cleavage and ductile tearing. Recent developments on constraint-based fracture mechanics have enabled the practical assessment of defective components including the constraint effect. However, how to quantify the effect of crack tip constraint on the fatigue crack propagation rate is still an open issue. It is common practice to use the Paris crack propagation law, which is based on the stress intensity factor alone. In this paper, the effect of crack tip constraint on the fatigue crack propagation of small cracks at T-plate welded joints is investigated. A fatigue crack propagation rate model is developed incorporating both low and high constraint conditions. It is shown that the effect of constraint on crack propagation rate is significant when the crack is small (within the stress concentration of the weld joints). This effect can be accounted for by using the proposed fatigue crack propagation rate model.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
He Xue ◽  
Yueqi Bi ◽  
Shuai Wang ◽  
Jianlong Zhang ◽  
Siyu Gou

For the problem of mechanical properties of heterogeneous dissimilar metal welded joints, when analyzed by the finite element method, it is usually simplified into a “sandwich” material structure model. However, the mechanical properties of materials in different regions of the “sandwich” material mechanics model are different, and there will be mutations at the material interface. In order to accurately describe the mechanical properties of welded joints, the constitutive equations of dissimilar metal welded joint materials were compiled, and the constitutive equations of inhomogeneous materials whose material mechanical properties were continuously changed with space coordinates were established. The ABAQUS software was used to establish the “sandwich” model and the continuous transition model. The model is used to compare and analyze the crack tip stress distribution of different yield strength mismatch coefficients. The results show that the continuous transition material model eliminates the mutation of the “sandwich” model at the material interface and achieves the continuous change of the mechanical properties of the material. For the longitudinal crack, under the influence of different mismatch coefficients, the crack tip stress field of the transitional material model is deflected toward the low yield strength side. The compilation of constitutive equations for continuous transition materials of dissimilar metal welded joints provides a basis for the safety evaluation of dissimilar metal welded joints.


2019 ◽  
Vol 103 ◽  
pp. 102293 ◽  
Author(s):  
Primož Štefane ◽  
Sameera Naib ◽  
Stijn Hertelé ◽  
Wim De Waele ◽  
Nenad Gubeljak

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
He Xue ◽  
Yuman Sun ◽  
Shun Zhang ◽  
Rehmat Bashir ◽  
Youjun Zhao ◽  
...  

The mechanical characteristic at the crack tip is one of the main factors affecting the stress corrosion cracking (SCC) in dissimilar metal welded joints (DMWJs). In this research, to evaluate the effect of heterogeneous material properties on the mechanical characteristic at the crack tip of DMWJs accurately, a heterogeneous material model of the SA508 Cl.3-Alloy 52M DMWJ was established based on USDFLD subroutine in ABAQUS. The comparison of the traditional “Sandwich” material model with the heterogeneous material properties, stress-strain conditions, and the plastic zone around the crack tip at the interference zone has been analyzed by the finite element method (FEM). The results indicated that the heterogeneous material model could characterize the mechanical properties of the SA508 Cl.3-Alloy 52M DMWJs accurately. In addition, the crack at the interface zone between materials will deflect along with the weld metal in two material models.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yuman Sun ◽  
He Xue ◽  
Kuan Zhao ◽  
Yubiao Zhang ◽  
Youjun Zhao ◽  
...  

The complicated driving force at the stress corrosion cracking (SCC) tip of the safe-end dissimilar metal-welded joints (DMWJs) in the pressurized water reactor (PWR) is mainly caused by the heterogeneous material mechanical properties. In this research, to accurately evaluate the crack driving force at the SCC in DMWJs, the stress-strain condition, stress triaxiality, and J-integral of the crack tip at different positions are analyzed based on the heterogeneous material properties model. The results indicate that the larger driving force will be provided for the I-type crack when the crack is in the SA508 zone and the interface between the 316L region and base metal. In addition, the heterogeneous material properties inhibit the J-integral of the crack in the 316L region, which has a promoting effect when the crack is in the SA508 zone and weld metal. It provides a new idea for analyzing driving force at the crack tip and safety evaluation of DMWJs in PWRs.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4145
Author(s):  
He Xue ◽  
Zheng Wang ◽  
Shuai Wang ◽  
Jinxuan He ◽  
Hongliang Yang

Dissimilar metal welded joints (DMWJs) possess significant localized mechanical heterogeneity. Using finite element software ABAQUS with the User-defined Material (UMAT) subroutine, this study proposed a constitutive equation that may be used to express the heterogeneous mechanical properties of the heat-affected and fusion zones at the interfaces in DMWJs. By eliminating sudden stress changes at the material interfaces, the proposed approach provides a more realistic and accurate characterization of the mechanical heterogeneity in the local regions of DMWJs than existing methods. As such, the proposed approach enables the structural integrity of DMWJs to be analyzed in greater detail.


Author(s):  
Seung-Ho Lee ◽  
Hyun-Woo Jung ◽  
Yun-Jae Kim ◽  
Kamran Nikbin ◽  
Robert A. Ainsworth

Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


Sign in / Sign up

Export Citation Format

Share Document