scholarly journals Hopf Bifurcation Characteristics of the Vehicle with Rear Axle Compliance Steering

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaomei Xu ◽  
Dong Chen ◽  
Lei Zhang ◽  
Ning Chen

To overcome the shortage of traditional rear axle compliance steering (RACS) technology, a kind of viscoelastic smart material is introduced into the rear suspension of a vehicle to construct rear wheel semiactive steering system. This article focuses on the nonlinear dynamic behavior of the vehicle with RACS incorporating viscoelastic smart material. First of all, considering the tire nonlinearity and the fractional derivative constitutive relation of the viscoelastic material, the nonlinear dynamic model of the vehicle with RACS is formulated. Then, the lateral dynamic behavior of the vehicle with RACS is demonstrated through numerical experiments. Finally, some factors that influence shimmy of the compliance steering wheel are investigated. Numerical results demonstrate the Hopf bifurcation characteristics of the vehicle with RACS and disclose the influence factors of Hopf bifurcation characteristics for the vehicle with RACS, which lay the theoretical foundation for the development of the rear wheel semiactive steering technology.

2020 ◽  
Vol 10 (10) ◽  
pp. 3537
Author(s):  
Bin Deng ◽  
Han Zhao ◽  
Ke Shao ◽  
Weihan Li ◽  
Andong Yin

The synchronization error of the left and right steering-wheel-angles and the disturbances rejection of the synchronization controller are of great significance for the active rear axle independent steering (ARIS) system under complex driving conditions and uncertain disturbances. In order to reduce synchronization error, a novel hierarchical synchronization control strategy based on virtual synchronization control and linear active disturbance rejection control (LADRC) is proposed. The upper controller adopts the virtual synchronization controller based on the dynamic model of the virtual rear axle steering mechanism to reduce the synchronization error between the rear wheel steering angles of the ARIS system; the lower controller is designed based on an LADRC algorithm to realize an accurate tracking control of the steering angle for each wheels. Experiments based on a prototype vehicle are conducted to prove that the proposed hierarchical synchronization control strategy for the ARIS system can improve the control accuracy significantly and has the properties of better disturbances rejection and stronger robustness.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xiulong Chen ◽  
Shuai Jiang ◽  
Yu Deng ◽  
Qing Wang

In order to understand the nonlinear dynamic behavior of a planar mechanism with clearance, the nonlinear dynamic model of the 2-DOF nine-bar mechanism with a revolute clearance is proposed; the dynamic response, phase diagrams, Poincaré portraits, and largest Lyapunov exponents (LLEs) of mechanism are investigated. The nonlinear dynamic model of 2-DOF nine-bar mechanism containing a revolute clearance is established by using the Lagrange equation. Dynamic response of the slider’s kinematics characteristic, contact force, driving torque, shaft center trajectory, and the penetration depth for 2-DOF nine-bar mechanism are all analyzed. Chaos phenomenon existed in the mechanism has been identified by using the phase diagrams, the Poincaré portraits, and LLEs. The effects of the different clearance sizes, different friction coefficients, and different driving speeds on dynamic behavior are studied. Bifurcation diagrams with changing clearance value, friction coefficient, and driving speed are drawn. The research could provide important technical support and theoretical basis for the further study of the nonlinear dynamics of planar mechanism.


2009 ◽  
Vol 11 (2) ◽  
pp. 163-168
Author(s):  
Long LV ◽  
Zhenfang HUANG ◽  
Jiang WU

2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110348
Author(s):  
Kai Hu ◽  
Wenyi Zhang

In order to improve the steering flexibility of agricultural machinery in hilly and mountainous areas, a multi-mode steering system with front wheel steering, rear wheel steering, and four-wheel steering has been developed. The hydraulic steering system based on load sensitivity principle and proportion-integration-differentiation (PID) controlling algorithm was designed, which overcomes the negative impact of external load changes on flow control accuracy. The mechanical-hydraulic-controlling coupling model established in the AMESim and the sequential quadratic combinatorial optimization algorithm (SQCOA) was adopted to obtain the optimal combination of PID parameters. The simulation results demonstrate that the parameters such as pressure, speed, displacement of hydraulic cylinders, etc. in different steering modes meet the design requirements. To examine and verify the system performance, the test platform was researched and developed for conducting steering radius and displacement measurement. The experimental data illustrated that the front and rear hydraulic cylinders have good synchronization accuracy in four-wheel steering mode, and the fast switch of steering mode can be realized. The maximum error rate of is steering radius 4.21% and 3.77%, respectively, in two-wheel steering and four-wheel steering modes. The research methods and conclusions can provide a theoretical basis and reference for the other steering system development.


2021 ◽  
Vol 11 (8) ◽  
pp. 3663
Author(s):  
Tianlong Lei ◽  
Jixin Wang ◽  
Zongwei Yao

This study constructs a nonlinear dynamic model of articulated vehicles and a model of hydraulic steering system. The equations of state required for nonlinear vehicle dynamics models, stability analysis models, and corresponding eigenvalue analysis are obtained by constructing Newtonian mechanical equilibrium equations. The objective and subjective causes of the snake oscillation and relevant indicators for evaluating snake instability are analysed using several vehicle state parameters. The influencing factors of vehicle stability and specific action mechanism of the corresponding factors are analysed by combining the eigenvalue method with multiple vehicle state parameters. The centre of mass position and hydraulic system have a more substantial influence on the stability of vehicles than the other parameters. Vehicles can be in a complex state of snaking and deviating. Different eigenvalues have varying effects on different forms of instability. The critical velocity of the linear stability analysis model obtained through the eigenvalue method is relatively lower than the critical velocity of the nonlinear model.


2021 ◽  
pp. 109963622110219
Author(s):  
Vu Thi Thuy Anh ◽  
Vu Dinh Quang ◽  
Nguyen Dinh Duc ◽  
Pham Ngoc Thinh

By using the first order shear deformation theory (FSTD), this paper presents the results of the nonlinear dynamic behavior and natural frequencies of sandwich plate supported by elastic foundations in thermal environment and subjected to mechanical load and blast loading. This work takes advantage of the sandwich plate configuration with three layers: graphene platelet –reinforced composite (GPL) layer – auxetic layer – FGM layer, to analyze the dynamic and vibration problem, in which the auxetic core layer has a negative Poisson's ratios and the FGM layer is reinforced by stiffeners made of full metal or full ceramic depending on a situation of stiffeners at the metal-rich or ceramic-rich side of the plate respectively. Corresponding to the combination of material layers, the mechanical quantities of the problem are processed and calculated to suit the structure and reinforcement conditions. Numerical results are provided to explore the influences of geometrical parameters, elastic foundation parameters, GPL volume fraction, blast and mechanical loads on the nonlinear dynamic behavior and vibration of sandwich plate resting on elastic foundation and in thermal environment. In addition, the study is not only assumed that the material properties depend on environment temperature variation, but also considered the thermal stresses in the stiffeners, as well as considered the effect of imperfections in the original shape of the structure.


Sign in / Sign up

Export Citation Format

Share Document