scholarly journals A Hybrid Approach Based on Variational Mode Decomposition for Analyzing and Predicting Urban Travel Speed

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Eui-Jin Kim ◽  
Ho-Chul Park ◽  
Seung-Young Kho ◽  
Dong-Kyu Kim

Predicting travel speeds on urban road networks is a challenging subject due to its uncertainty stemming from travel demand, geometric condition, traffic signals, and other exogenous factors. This uncertainty appears as nonlinearity, nonstationarity, and volatility in traffic data, and it also creates a spatiotemporal heterogeneity of link travel speed by interacting with neighbor links. In this study, we propose a hybrid model using variational mode decomposition (VMD) to investigate and mitigate the uncertainty of urban travel speeds. The VMD allows the travel speed data to be divided into orthogonal and oscillatory sub-signals, called modes. The regular components are extracted as the low-frequency modes, and the irregular components presenting uncertainty are transformed into a combination of modes, which is more predictable than the original uncertainty. For the prediction, the VMD decomposes the travel speed data into modes, and these modes are predicted and summed to represent the predicted travel speed. The evaluation results on urban road networks show that, the proposed hybrid model outperforms the benchmark models both in the congested and in the overall conditions. The improvement in performance increases significantly over specific link-days, which generally are hard to predict. To explain the significant variance of the prediction performance according to each link and each day, the correlation analysis between the properties of modes and the performance of the model are conducted. The results on correlation analysis show that the more variance of nondaily pattern is explained through the modes, the easier it was to predict the speed. Based on the results, discussions on the interpretation on the correlation analysis and future research are presented.

2021 ◽  
pp. 1-17
Author(s):  
Nuzhat Fatema ◽  
H Malik ◽  
Mutia Sobihah Binti Abd Halim

This paper proposed a hybrid intelligent approach based on empirical mode decomposition (EMD), autoregressive integrated moving average (ARIMA) and Monte Carlo simulation (MCS) methods for multi-step ahead medical tourism (MT) forecasting using explanatory input variables based on two decade real-time recorded database. In the proposed hybrid model, these variables are 1st extracted then medical tourism is forecasted to perform the long term as well as the short term goal and planning in the nation. The multi-step ahead medical tourism is forecasted recursively, by utilizing the 1st forecasted value as the input variable to generate the next forecasting value and this procedure is continued till third step ahead forecasted value. The proposed approach firstly tested and validated by using international tourism arrival (ITA) dataset then proposed approach is implemented for forecasting of medical tourism arrival in nation. In order to validate the performance and accuracy of the proposed hybrid model, a comparative analysis is performed by using Monte Carlo method and the results are compared. Obtained results shows that the proposed hybrid forecasting approach for medical tourism has outperformance characteristics.


Author(s):  
B. Anbaroglu ◽  
B. Heydecker ◽  
T. Cheng

Occurrence of non-recurrent traffic congestion hinders the economic activity of a city, as travellers could miss appointments or be late for work or important meetings. Similarly, for shippers, unexpected delays may disrupt just-in-time delivery and manufacturing processes, which could lose them payment. Consequently, research on non-recurrent congestion detection on urban road networks has recently gained attention. By analysing large amounts of traffic data collected on a daily basis, traffic operation centres can improve their methods to detect non-recurrent congestion rapidly and then revise their existing plans to mitigate its effects. Space-time clusters of high link journey time estimates correspond to non-recurrent congestion events. Existing research, however, has not considered the effect of travel demand on the effectiveness of non-recurrent congestion detection methods. Therefore, this paper investigates how travel demand affects detection of non-recurrent traffic congestion detection on urban road networks. Travel demand has been classified into three categories as low, normal and high. The experiments are carried out on London’s urban road network, and the results demonstrate the necessity to adjust the relative importance of the component evaluation criteria depending on the travel demand level.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Guohui Li ◽  
Xiao Ma ◽  
Hong Yang

The change of the number of sunspots has a great impact on the Earth’s climate, agriculture, communications, natural disasters, and other aspects, so it is very important to predict the number of sunspots. Aiming at the chaotic characteristics of monthly mean of sunspots, a novel hybrid model for forecasting sunspots time-series based on variational mode decomposition (VMD) and backpropagation (BP) neural network improved by firefly algorithm (FA) is proposed. Firstly, a set of intrinsic mode functions (IMFs) are obtained by VMD decomposition of the monthly mean time series of the sunspots. Secondly, the firefly algorithm is introduced to initialize the weights and thresholds of the BP neural network, and a prediction model is established for each IMF. Finally, the predicted values of these components are calculated to obtain the final predict results. Comparing BP model, FA-BP model, EMD-BP model, and VMD-BP model, the simulation results show that the proposed algorithm has higher prediction accuracy and can be used to forecast the time series of sunspots.


Information ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 177 ◽  
Author(s):  
Guohui Li ◽  
Xiao Ma ◽  
Hong Yang

The matter of success in forecasting precipitation is of great significance to flood control and drought relief, and water resources planning and management. For the nonlinear problem in forecasting precipitation time series, a hybrid prediction model based on variational mode decomposition (VMD) coupled with extreme learning machine (ELM) is proposed to reduce the difficulty in modeling monthly precipitation forecasting and improve the prediction accuracy. The monthly precipitation data in the past 60 years from Yan’an City and Huashan Mountain, Shaanxi Province, are used as cases to test this new hybrid model. First, the nonstationary monthly precipitation time series are decomposed into several relatively stable intrinsic mode functions (IMFs) by using VMD. Then, an ELM prediction model is established for each IMF. Next, the predicted values of these components are accumulated to obtain the final prediction results. Finally, three predictive indicators are adopted to measure the prediction accuracy of the proposed hybrid model, back propagation (BP) neural network, Elman neural network (Elman), ELM, and EMD-ELM models: mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE). The experimental simulation results show that the proposed hybrid model has higher prediction accuracy and can be used to predict the monthly precipitation time series.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Wen-Long Shang ◽  
Yanyan Chen ◽  
Chengcheng Song ◽  
Washington Y. Ochieng

This study comprehensively analyses the robustness of urban road networks through topological indices based on the complex network theory and operational indices based on traffic assignment theory: User Equilibrium (UE), System Optimum (SO), and Price of Anarchy (POA). Analysing topological indices may pin down the most important nodes for URNs from the perspective of connectivity, while more sophisticated operational indices are helpful to examine the importance of nodes for URNs by taking into account link capacity, travel demand, and drivers’ behaviour. The previous way is calculated in a static way, which reduces the computation times and increases the efficiency for quick assessment of the robustness of URNs, while the latter is in a dynamic way, namely, calculating is based on removal of individual nodes, although this way is more likely to capture realistic meanings but consumes huge amount of time. The efforts made in this study try to find the relationship between topological and operational indices so as to assist the assessment of robustness of URNs to local disruptions. Seven realistic urban road networks such as Sioux Falls and Anaheim are used as network examples, and results show that different indices reflect robustness characteristics of urban road networks from different ways, and rank correlations between any two indices are poor although small network such as Sioux Falls have better correlations than others.


Sign in / Sign up

Export Citation Format

Share Document