scholarly journals Mechanisms of Compound Kushen Injection for the Treatment of Lung Cancer Based on Network Pharmacology

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Ziqi Meng ◽  
Xinkui Liu ◽  
Jiarui Wu ◽  
Wei Zhou ◽  
Kaihuan Wang ◽  
...  

Background. Compound Kushen Injection (CKI) is a Chinese patent drug that shows good efficacy in treating lung cancer (LC). However, its underlying mechanisms need to be further clarified.Methods. In this study, we adopted a network pharmacology method to gather compounds, predict targets, construct networks, and analyze biological functions and pathways. Moreover, molecular docking simulation was employed to assess the binding potential of selected target-compound pairs.Results. Four networks were established, including the compound-putative target network, protein-protein interaction (PPI) network of LC targets, compound-LC target network, and herb-compound-target-pathway network. Network analysis showed that 8 targets (CHRNA3, DRD2, PRKCA, CDK1, CDK2, CHRNA5, MMP1, and MMP9) may be the therapeutic targets of CKI in LC. In addition, molecular docking simulation indicated that CHRNA3, DRD2, PRKCA, CDK1, CDK2, MMP1, and MMP9 had good binding activity with the corresponding compounds. Furthermore, enrichment analysis indicated that CKI might exert a therapeutic role in LC by regulating some important pathways, namely, pathways in cancer, proteoglycans in cancer, PI3K-Akt signaling pathway, non-small-cell lung cancer, and small cell lung cancer.Conclusions. This study validated and predicted the mechanism of CKI in treating LC. Additionally, this study provides a good foundation for further experimental studies and promotes the reasonable application of CKI in the clinical treatment of LC.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoling Li ◽  
Baixin Lin ◽  
Zhiping Lin ◽  
Yucui Ma ◽  
Qu Wang ◽  
...  

AbstractFucosterol, a sterol isolated from brown algae, has been demonstrated to have anti-cancer properties. However, the effects and underlying molecular mechanism of fucosterol on non-small cell lung cancer remain to be elucidated. In this study, the corresponding targets of fucosterol were obtained from PharmMapper, and NSCLC related targets were gathered from the GeneCards database, and the candidate targets of fucosterol-treated NSCLC were predicted. The mechanism of fucosterol against NSCLC was identified in DAVID6.8 by enrichment analysis of GO and KEGG, and protein–protein interaction data were collected from STRING database. The hub gene GRB2 was further screened out and verified by molecular docking. Moreover, the relationship of GRB2 expression and immune infiltrates were analyzed by the TIMER database. The results of network pharmacology suggest that fucosterol acts against candidate targets, such as MAPK1, EGFR, GRB2, IGF2, MAPK8, and SRC, which regulate biological processes including negative regulation of the apoptotic process, peptidyl-tyrosine phosphorylation, positive regulation of cell proliferation. The Raf/MEK/ERK signaling pathway initiated by GRB2 showed to be significant in treating NSCLC. In conclusion, our study indicates that fucosterol may suppress NSCLC progression by targeting GRB2 activated the Raf/MEK/ERK signaling pathway, which laying a theoretical foundation for further research and providing scientific support for the development of new drugs.


Life Sciences ◽  
2021 ◽  
Vol 270 ◽  
pp. 119105
Author(s):  
Chong Yuan ◽  
Meng-Heng Wang ◽  
Fei Wang ◽  
Peng-Yu Chen ◽  
Xin-Ge Ke ◽  
...  

2020 ◽  
Author(s):  
Huiqin Qian ◽  
Bai-Ling Wang ◽  
Ling-Yun Zhang ◽  
Jia-Xiang Li ◽  
Xiu-Xiu Huang

Abstract Background Inula japonica Thunb. (IJT) is an extensively applied herbal medicine for treating non-small cell lung cancer (NSCLC) due to its anti-asthma, antitussive, and expectorant properties. However, the mechanism of IJT against NSCLC remains to be elucidated. Methods Network pharmacology analysis was applied to determine the function mechanism of IJT against NSCLC. Databases were used to collect compounds and their related and known therapeutic targets. The compound–target (C–T) and target–target networks were then constructed to screen the kernel compounds and NSCLC-related targets of IJT. Moreover, the NSCLC-related targets of IJT were input in the DAVID Bioinformatics Resources (version 6.8) for Gene Ontology Biological Processes (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, the binding affinity of major compounds with the NSCLC-relevant targets of IJT was further verified by molecular docking. Results Two active compounds (quercetin and luteolin) and six putative targets (RAC-alpha serine/threonine-protein kinase, G1/S-specific cyclin-D1, cyclin-dependent kinase inhibitor 2A, epidermal growth factor receptor, receptor tyrosine-protein kinase erbB-2, and cellular tumor antigen p53) were screened as the effective compounds and NSCLC-related targets of IJT. GOBP and KEGG enrichment analysis indicated that NSCLC was the major pathway of IJT in the treatment of NSCLC and the mediation of apoptosis, cell cycle, tumor progression, and proliferation of biological processes, including the Ras, ERBB, MAPK, PI3K–Akt, calcium, and p53 signaling pathways. The results of molecular docking validated that 10 of the 12 pairs of compound-target had effective binding. Conclusions The mechanisms of IJT against NSCLC through multi-compounds, multi-targets, and multi-pathways were elucidated.


2020 ◽  
Author(s):  
Xiaoling Li ◽  
Baixin Lin ◽  
Zhiping Lin ◽  
Qu Wang ◽  
Yushi Zheng ◽  
...  

Abstract Background: It has been demonstrated that fucosterol induces a therapeutic effect on cancer. However, the molecular mechanisms underlying the effects of fucosterol in the treatment of non-small cell lung cancer are still unclear.Methods: In this study, pharmMapper and GeneCards databases were utilized to gather the prediction of fucosterol targets and NSCLC-related targets. The mechanisms of fucosterol against NSCLC were identified in DAVID6.8 by enrichment analysis of GO and KEGG, and protein-protein interaction data was obtained from Sting Database. Molecular docking was used to predict the docking of GRB2. Moreover, the relationship of GRB2 expression and immune infiltrates was analyzed by TIMER database.Results: The results suggest that fucosterol acts against by candidate targets, such as MAPK1, EGFR, GRB2, IGF2, MAPK8 and SRC, which regulate biological processes including negative regulation of apoptotic process, peptidyl-tyrosine phosphorylation, positive regulation of cell proliferation. The Raf / MEK / ERK signaling pathway initiated by GRB2 maybe the most significant pathway for fucosterol to treat NSCLC.Conclusions: These results show that GRB2 is the key target for fucosterol in the treatment of NSCLC, which laying a theoretical foundation for further research and providing scientific support for the development of new drugs.


2020 ◽  
Author(s):  
Wanjin Fu ◽  
Ajuan Gong ◽  
Bin Yu ◽  
Xin Wei ◽  
Yong Chen ◽  
...  

Abstract Background: Shenlian Capsule is a Chinese medicine compound approved by the China Food and Drug Administration (CFDA) for the treatment of advanced non-small cell lung cancer(NSCLC). However, due to its complex constituents, cause its effective active compounds and main action mechanisms for treating diseases are still not fully clear. The purpose of this work is to explore the active ingredients and mechanisms of Shenlian Capsule treatment NSCLC through a system pharmacological approach. Methods: First, a database of Shenlian Capsule chemical composition was constructed by retrieving Chinese herbal medicine data. Absorption, distribution, metabolism and excretion (ADME) methods were used to screen potential active compounds. Predict active compound targets with a large-scale molecular network target prediction technology. Clustering of active compounds obtained through cluster analysis by MECODE plug-in, each cluster obtains the main pathways through enrichment analysis method. To get all targets related to survival in NSCLC, the survival related targets were intersected with the compounds target (C-T) network to get the survival related targets for Shenlian Capsule. Finally, a batch molecular docking technique was used to verify the effect of active compounds of Shenlian Capsule on survival-related targets.Results: The Shenlian Capsule C-T network was constructed with 117 potential compounds and 47 targets. Treatment of NSCLC with Shenlian Capsule through enrichment analysis may involve multiple pathways such as anti-inflammatory, immune regulation, regulation of cell cycle, apoptosis, antiviral, cell hypoxia, angiogenesis and so on. Shenlian Capsule has eight survival-related genes in non-small cell lung adenocarcinoma (LUAD) and two survival-related genes in non-small cell squamous cell lung carcinoma (LUSC). It is known through molecular docking that the active compound has lower energy after conformation with survival-related genes, and has lower binding energy and stable binding.Conclusion: In this study, the potential compounds of active compounds in Shenlian Capsule were first predicted using network pharmacology technology. Through the enrichment analysis, the main pathways of the role of Shenlian Capsule were outcropped. Secondly, by combining bioinformatics and network pharmacology, Shenlian Capsule can be regulated to target survival-related targets. Finally, the molecular docking technique shows the relationship between active compounds and survival-related targets after docking. This work provided a scientific basis for the clinical role of Shenlian Capsule in the treatment of NSCLC, provided a research basis for further clarifying the active ingredients and mechanism of Shenlian Capsule in the treatment of NSCLC.


2020 ◽  
Author(s):  
Xiaoling Li ◽  
Baixin Lin ◽  
Zhiping Lin ◽  
Qu Wang ◽  
Yushi Zheng ◽  
...  

Abstract Background It has been demonstrated that fucosterol induces a therapeutic effect on cancer. However, the molecular mechanisms underlying the effects of fucosterol in the treatment of non-small cell lung cancer are still unclear.Methods In this study, pharmMapper and GeneCards databases were utilized to gather the prediction of fucosterol targets and NSCLC-related targets. The mechanisms of fucosterol against NSCLC were identified in DAVID6.8 by enrichment analysis of GO and KEGG, and protein-protein interaction data was obtained from Sting Database. Molecular docking was used to predict the docking of GRB2. Moreover, the relationship of GRB2 expression and immune infiltrates was analyzed by TIMER database.Results The results suggest that fucosterol acts against by candidate targets, such as MAPK1, EGFR, GRB2, IGF2, MAPK8 and SRC, which regulate biological processes including negative regulation of apoptotic process, peptidyl-tyrosine phosphorylation, positive regulation of cell proliferation. The Raf / MEK / ERK signaling pathway initiated by GRB2 maybe the most significant pathway for fucosterol to treat NSCLC.Conclusions These results show that GRB2 is the key target for fucosterol in the treatment of NSCLC, which laying a theoretical foundation for further research and providing scientific support for the development of new drugs.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199767
Author(s):  
Tian-jiao Zhou ◽  
Jun-feng Liu ◽  
Ping Wang ◽  
An-na Hu ◽  
Lin-lin Chen ◽  
...  

Yiqi Sanjie formula (YQSJF) is mainly applied clinically for the treatment of lung neoplasms. The purpose of this study was to explore the pharmacodynamics of the active components of YQSJF and the mechanism of therapeutic effects in the treatment of lung neoplasm diseases based on network pharmacology. The network of component-target, target-pathway, and pathway-disease of YQSJF was constructed by using Cytoscape software. According to the screening result, 37 key components, 57 important targets, and 866 candidate pathways were obtained. The enrichment analysis results indicated that YQSJF might play a therapeutic role in lung cancer by regulating several signaling pathways, such as the PI3K-AKT, non-small cell lung cancer, small cell lung cancer, and apoptosis pathways. There were 53 intersection genes between YQSJF and the lung cancer gene, 52 common genes, and 11 key targets, including CASP8, CASP9, AR, ESR1, PTGS2, NOS3, PGR, TGFB1, PPARG, RELA, and NOS2, screened by using Protein-Protein Interaction (PPI) analysis. These could be the potential therapeutic targets of YQSJF against lung cancer. Enrichment analysis of the intersection gene pathways revealed 10 major functional pathways, including the VEGF, apoptosis, and IL-17 signaling pathways. The molecular docking results showed the potential regulating activity of kaempferol against AR, pelargonidin against PGR, and baicalein against both PTGS2 and AR. In conclusion, combinational network pharmacology analysis results indicated that YQSJF might present its efficacy of alleviating lung neoplasm symptoms through multiple targets in a synergetic way.


2020 ◽  
Author(s):  
Xiaoling Li ◽  
Riming Huang ◽  
Mingyue Li ◽  
Zheng Zhu ◽  
Zhiyan Chen ◽  
...  

Abstract Background: EGFR tyrosine kinase inhibitors (TKIs) have been developed for the treatment of EGFR mutated NSCLC. Parthenolide, a natural product of parthenolide, which belongs to the sesquiterpene lactone family and has a variety of biological and therapeutic activities, including anti-cancer effects. However, its effect on non-small cell lung cancer is little known. Methods: The CCK-8 assay and colony formation assays were used to assess cell viability. Flow cytometry was used to measure the cell apoptosis. In silico molecular docking was used to evaluate the binding of parthenolide to EGFR. Network pharmacology analysis was was used to evaluate the key gene of parthenolide target NSCLC. Western blotting was used to evaluate the key proteins involved apoptosis and EGFR signalling. The effect of parthenolide treatment in vivo was determined by using a xenograft mouse model. Results: In this study, parthenolide could induce apoptosis and growth inhibition in the EGFR mutated lung cancer cells. Parthenolide also reduces the phosphorylation of EGFR as well as its downstream signaling pathways MAPK/ERK and PI3K/Akt. Molecular docking analysis of EGFR binding site with parthenolide show that the anti-cancer effect of parthenolide against NSCLC is mediated by a strong binding to EGFR. Network pharmacology analysis show parthenolide suppresses NSCLC via inhibition of EGFR expression. In addition, parthenolide inhibits the growth of H1975 xenografts in nude mice, which is associated with the inhibition of the EGFR signaling pathway. Conclusions: Taken together, these results demonstrate effective inhibition of parthenolide in NSCLC cell growth by targeting EGFR through downregulation of ERK and AKT expression, which could be promisingly used for patients carrying the EGFR mutation.


2020 ◽  
Author(s):  
Xiaoling Li ◽  
Riming Huang ◽  
Mingyue Li ◽  
Zheng Zhu ◽  
Zhiyan Chen ◽  
...  

Abstract Background: EGFR tyrosine kinase inhibitors (TKIs) have been developed for the treatment of EGFR mutated NSCLC. Parthenolide, a natural product of parthenolide, which belongs to the sesquiterpene lactone family and has a variety of biological and therapeutic activities, including anti-cancer effects. However, its effect on non-small cell lung cancer is little known. Methods: The CCK‑8 assay and colony formation assays were used to assess cell viability. Flow cytometry was used to measure the cell apoptosis. In silico molecular docking was used to evaluate the binding of parthenolide to EGFR. Network pharmacology analysis was was used to evaluate the key gene of parthenolide target NSCLC. Western blotting was used to evaluate the key proteins involved apoptosis and EGFR signalling. The effect of parthenolide treatment in vivo was determined by using a xenograft mouse model.Results: In this study, parthenolide could induce apoptosis and growth inhibition in the EGFR mutated lung cancer cells. Parthenolide also reduces the phosphorylation of EGFR as well as its downstream signaling pathways MAPK/ERK and PI3K/Akt. Molecular docking analysis of EGFR binding site with parthenolide show that the anti-cancer effect of parthenolide against NSCLC is mediated by a strong binding to EGFR. Network pharmacology analysis show parthenolide suppresses NSCLC via inhibition of EGFR expression. In addition, parthenolide inhibits the growth of H1975 xenografts in nude mice, which is associated with the inhibition of the EGFR signaling pathway. Conclusions: Taken together, these results demonstrate effective inhibition of parthenolide in NSCLC cell growth by targeting EGFR through downregulation of ERK and AKT expression, which could be promisingly used for patients carrying the EGFR mutation.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoling Li ◽  
Riming Huang ◽  
Mingyue Li ◽  
Zheng Zhu ◽  
Zhiyan Chen ◽  
...  

Abstract Background EGFR tyrosine kinase inhibitors (TKIs) have been developed for the treatment of EGFR mutated NSCLC. Parthenolide, a natural product of parthenolide, which belongs to the sesquiterpene lactone family and has a variety of biological and therapeutic activities, including anti-cancer effects. However, its effect on non-small cell lung cancer is little known. Methods The CCK8 assay and colony formation assays were used to assess cell viability. Flow cytometry was used to measure the cell apoptosis. In silico molecular docking was used to evaluate the binding of parthenolide to EGFR. Network pharmacology analysis was was used to evaluate the key gene of parthenolide target NSCLC. Western blotting was used to evaluate the key proteins involved apoptosis and EGFR signalling. The effect of parthenolide treatment in vivo was determined by using a xenograft mouse model. Results In this study, parthenolide could induce apoptosis and growth inhibition in the EGFR mutated lung cancer cells. Parthenolide also reduces the phosphorylation of EGFR as well as its downstream signaling pathways MAPK/ERK and PI3K/Akt. Molecular docking analysis of EGFR binding site with parthenolide show that the anti-cancer effect of parthenolide against NSCLC is mediated by a strong binding to EGFR. Network pharmacology analysis show parthenolide suppresses NSCLC via inhibition of EGFR expression. In addition, parthenolide inhibits the growth of H1975 xenografts in nude mice, which is associated with the inhibition of the EGFR signaling pathway. Conclusions Taken together, these results demonstrate effective inhibition of parthenolide in NSCLC cell growth by targeting EGFR through downregulation of ERK and AKT expression, which could be promisingly used for patients carrying the EGFR mutation.


Sign in / Sign up

Export Citation Format

Share Document