compound kushen injection
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 55)

H-INDEX

11
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Bao-Yong Lai ◽  
Ai-Jing Chu ◽  
Bo-Wen Yu ◽  
Li-Yan Jia ◽  
Ying-Yi Fan ◽  
...  

Objective. To systematically evaluate the effect and safety of compound Kushen injection (CKI) as an add-on treatment on the treatment for breast cancer. Methods. We searched eight major electronic databases from their inception to November 1, 2021, for randomized clinical trials (RCTs) comparing CKI plus chemotherapy with chemotherapy alone. Primary outcomes included objective response rate (ORR) and disease control rate (DCR), health-related quality of life (HRQoL), progression-free survival (PFS), and overall survival (OS). Secondary outcomes included adverse drug reactions (ADRs) and tumor marker level. We used Cochrane’s RevMan 5.3 for data analysis. The GRADEpro was used to appraise the certainty of evidence. Trial sequential analysis (TSA) was applied to estimate the required sample size in a meta-analysis and test the robustness of the current results. Results. Thirty RCTs with 2556 participants were totally included. CKI plus chemotherapy showed significant effects in increasing ORR (RR 1.30, 95%CI [1.18, 1.43], I2 = 27%, n = 1694), increasing DCR (RR 1.21, 95%CI [1.15, 1.28], I2 = 16%, n = 1627), increasing HRQol as measured by Karnofsky Performance Scale (KPS) score improvement rate (RR 1.42, 95% CI [1.26, 1.61], I2 = 37%, n = 1172), increasing the PFS (MD 2.24 months, 95%CI [1.26, 3.22], n = 94) and the OS (MD 2.24 months, 95%CI [1.45, 3.43], n = 94), compared to chemotherapy alone. The results showed that CKI plus chemotherapy had a lower risk of ADRs than that of chemotherapy alone group. The certainty of evidence of the included trials was generally low to very low. TSA for ORR and KPS score improvement rate demonstrated that the current results reached a sufficient power regarding both numbers of trials and participants. Conclusions. Low certainty of evidence suggested that the combination of CKI and conventional chemotherapy appeared to improve ORR, DCR, and KPS score in breast cancer patients. Conclusions about PFS and OS could not be drawn due to lack of evidence. Additionally, CKI appeared to relieve the risk of ADRs in patients with breast cancer receiving chemotherapies. However, due to weak evidence, the findings should be further confirmed in large and rigorous trials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jianxiao Zheng ◽  
Gong Li ◽  
Juanjuan Wang ◽  
Shujing Wang ◽  
Qing Tang ◽  
...  

Background: Radiation-induced skin injury is a major side-effect observed in cancer patients who received radiotherapy. Thus identifying new radioprotective drugs for prevention or treatment of post-irradiation skin injury should be prompted. A large number of clinical studies have confirmed that Compound Kushen injection (CKI) can enhance efficacy and reduce toxicity of radiotherapy. The aim of this study is to confirm the effect of CKI in alleviating radiotherapy injury in the skin and explore the exact mechanism.Methods: 60 patients who met the inclusion/exclusion criteria were allocated to treatment group (CKI before radiotherapy) or control group (normal saline before radiotherapy) randomly. MTT assay, flow cytometry, Western Blot, and transient transfection were performed to detect the cell viability, cell apoptosis and Bim expression after treatment with CKI or/and radiotherapy.Results: CKI had the effect of alleviating skin injury in cancer patients who received radiotherapy in clinic. CKI induced cancer cell apoptosis when combined with irradiation (IR), while it reversed the induction of cell apoptosis by IR in human skin fibroblast (HSF) cells. And Bim, as a tumor suppressor, was induced in cancer cells but had no change in HSF cells when treated with CKI. Moreover, the above effect could be attenuated when Bim was silenced by siRNA.Conclusion: We conclude that CKI represents a promising radio-protective agent with a potential differential beneficial effect on both cancer cells (inducing apoptosis) and HSF cells (providing radio-protection via inhibiting IR-induced apoptosis), via regulating Bim. Our study uncovers a novel mechanism by which CKI inhibits human cancer cell while protects skin from radiotherapy, indicating CKI might be a promising radio-protective drug.Clinical Trial Registration: Chinese Clinical Trial Registry (www.chictr.org.cn), identifier ChiCTR2100049164.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Wu ◽  
Zhi-Hong Huang ◽  
Zi-Qi Meng ◽  
Xiao-Tian Fan ◽  
Shan Lu ◽  
...  

Abstract Background Compound kushen injection (CKI), a Chinese patent drug, is widely used in the treatment of various cancers, especially neoplasms of the digestive system. However, the underlying mechanism of CKI in pancreatic cancer (PC) treatment has not been totally elucidated. Methods Here, to overcome the limitation of conventional network pharmacology methods with a weak combination with clinical information, this study proposes a network pharmacology approach of integrated bioinformatics that applies a weighted gene co-expression network analysis (WGCNA) to conventional network pharmacology, and then integrates molecular docking technology and biological experiments to verify the results of this network pharmacology analysis. Results The WGCNA analysis revealed 2 gene modules closely associated with classification, staging and survival status of PC. Further CytoHubba analysis revealed 10 hub genes (NCAPG, BUB1, CDK1, TPX2, DLGAP5, INAVA, MST1R, TMPRSS4, TMEM92 and SFN) associated with the development of PC, and survival analysis found 5 genes (TSPOAP1, ADGRG6, GPR87, FAM111B and MMP28) associated with the prognosis and survival of PC. By integrating these results into the conventional network pharmacology study of CKI treating PC, we found that the mechanism of CKI for PC treatment was related to cell cycle, JAK-STAT, ErbB, PI3K-Akt and mTOR signalling pathways. Finally, we found that CDK1, JAK1, EGFR, MAPK1 and MAPK3 served as core genes regulated by CKI in PC treatment, and were further verified by molecular docking, cell proliferation assay, RT-qPCR and western blot analysis. Conclusions Overall, this study suggests that the optimized network pharmacology approach is suitable to explore the molecular mechanism of CKI in the treatment of PC, which provides a reference for further investigating biomarkers for diagnosis and prognosis of PC and even the clinical rational application of CKI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Li ◽  
Kexin Wang ◽  
Yupeng Chen ◽  
Jieqi Cai ◽  
Xuemei Qin ◽  
...  

Breast cancer (BC) is one of the most common malignant tumors among women worldwide and can be treated using various methods; however, side effects of these treatments cannot be ignored. Increasing evidence indicates that compound kushen injection (CKI) can be used to treat BC. However, traditional Chinese medicine (TCM) is characterized by “multi-components” and “multi-targets”, which make it challenging to clarify the potential therapeutic mechanisms of CKI on BC. Herein, we designed a novel system pharmacology strategy using differentially expressed gene analysis, pharmacokinetics synthesis screening, target identification, network analysis, and docking validation to construct the synergy contribution degree (SCD) and therapeutic response index (TRI) model to capture the critical components responding to synergistic mechanisms of CKI in BC. Through our designed mathematical models, we defined 24 components as a high contribution group of synergistic components (HCGSC) from 113 potentially active components of CKI based on ADME parameters. Pathway enrichment analysis of HCGSC targets indicated that Rhizoma Heterosmilacis and Radix Sophorae Flavescentis could synergistically target the PI3K-Akt signaling pathway and the cAMP signaling pathway to treat BC. Additionally, TRI analysis showed that the average affinity of HCGSC and targets involved in the key pathways reached -6.47 kcal/mmol, while in vitro experiments proved that two of the three high TRI-scored components in the HCGSC showed significant inhibitory effects on breast cancer cell proliferation and migration. These results demonstrate the accuracy and reliability of the proposed strategy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Gao ◽  
Lina Hai ◽  
Yuan Kang ◽  
Wenjie Qin ◽  
Fang Liu ◽  
...  

Compound Kushen Injection (CKI) is a bis-herbal formulation extracted from Kushen (Radix Sophorae Flavescentis) and Baituling (Rhizoma Heterosmilacis Yunnanensis). Clinically, it is used as the adjuvant treatment of cancer. However, with the increased application, the cases of immediate hypersensitivity reactions (IHRs) also gradually rise. In this study, we investigated the underlying mechanism(s) and active constituent(s) for CKI-induced IHRs in experimental models. The obtained results showed that CKI did not elevate serum total IgE (tIgE) and mouse mast cell protease 1 (MMCP1) after consecutive immunization for 5 weeks, but could induce Evans blue extravasation (local) and cause obvious hypothermia (systemic) after a single injection. Further study showed that alkaloids in Kushen, especially matrine, were responsible for CKI-induced IHRs. Mechanism study showed that various platelet-activating factor (PAF) receptor antagonists could significantly counter CKI-induced IHRs locally or systemically. In cell system, CKI was able to promote PAF production in a non-cell-selective manner. In cell lysate, the effect of CKI on PAF production became stronger and could be abolished by blocking de novo pathway. In conclusion, our study identifies, for the first time, that CKI is a PAF inducer. It causes non-immunologic IHRs, rather than IgE-dependent IHRs, by promoting PAF production through de novo pathway. Alkaloids in Kushen, especially matrine, are the prime culprits for IHRs. Our findings may provide a potential approach for preventing and treating CKI-induced IHRs.


Author(s):  
Wei Zhou ◽  
Chao Wu ◽  
Chongjun Zhao ◽  
Zhihong Huang ◽  
Shan Lu ◽  
...  

Gastric carcinoma (GC) is a severe tumor of the digestive tract with high morbidity and mortality and poor prognosis, for which novel treatment options are urgently needed. Compound Kushen injection (CKI), a classical injection of Chinese medicine, has been widely used to treat various tumors in clinical practice for decades. In recent years, a growing number of studies have confirmed that CKI has a beneficial therapeutic effect on GC, However, there are few reports on the potential molecular mechanism of action. Here, using systems pharmacology combined with proteomics analysis as a core concept, we identified the ceRNA network, key targets and signaling pathways regulated by CKI in the treatment of GC. To further explore the role of these key targets in the development of GC, we performed a meta-analysis to compare the expression differences between GC and normal gastric mucosa tissues. Functional enrichment analysis was further used to understand the biological pathways significantly regulated by the key genes. In addition, we determined the significance of the key genes in the prognosis of GC by survival analysis and immune infiltration analysis. Finally, molecular docking simulation was performed to verify the combination of CKI components and key targets. The anti-gastric cancer effect of CKI and its key targets was verified by in vivo and in vitro experiments. The analysis of ceRNA network of CKI on GC revealed that the potential molecular mechanism of CKI can regulate PI3K/AKT and Toll-like receptor signaling pathways by interfering with hub genes such as AKR1B1, MMP2 and PTGERR3. In conclusion, this study not only partially highlighted the molecular mechanism of CKI in GC therapy but also provided a novel and advanced systems pharmacology strategy to explore the mechanisms of traditional Chinese medicine formulations.


2021 ◽  
Vol 5 (5) ◽  
pp. 4-6
Author(s):  
Yuntao Duan ◽  
Weijian Liang ◽  
Junming Hou ◽  
Dezhen Yang

Compound Kushen Injection (CKI), as a clinical traditional Chinese medicine preparation, has prominent antitumor effect but with several side effects. A large number of studies have shown that CKI plays an antitumor role by regulating tumor cell proliferation, inducing tumor cell differentiation and apoptosis, inhibiting tumor cell invasion and metastasis, reducing tumor angiogenesis, regulating the immunity, and so on. Clinically, CKI is widely used to treat various tumors, where it is often combined with surgery, chemotherapy, radiotherapy, targeted therapy, and other antitumor treatments. This article reviews the antitumor mechanism of CKI and the progress of its clinical application in order to provide a theoretical basis for further clinical application.


Sign in / Sign up

Export Citation Format

Share Document