scholarly journals Impact of Short-Term Continuous and Interval Exercise Training on Endothelial Function and Glucose Metabolism in Prediabetes

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Steven K. Malin ◽  
Nicole M. Gilbertson ◽  
Natalie Z. M. Eichner ◽  
Emily Heiston ◽  
Stephanie Miller ◽  
...  

Introduction. The impact of interval (INT) vs. continuous (CONT) exercise training on endothelial function in relation to glucose metabolism prior to clinically meaningful weight loss is unknown in adults with prediabetes. Methods. Twenty-six subjects with prediabetes (60±1 y; 33±1 kg/m2; 2-hr-PG OGTT: 145±7 mg/dl) were randomized to 60 min of CONT (n=12; 70% of HRpeak) or work-matched INT exercise training (n=14; alternating 3 min at 90 and 50% HRpeak) for 2 weeks. Aerobic fitness (VO2peak) and body composition (bioelectrical impedance) were assessed before and after training. Flow-mediated dilation (FMD) was measured during a 2 h 75 g OGTT (0, 60, and 120 min) to assess endothelial function. Postprandial FMD was calculated as incremental area under the curve (iAUC). Glucose tolerance and insulin were also calculated by iAUC. Fasting plasma VCAM, ICAM, and hs-CRP were also assessed as indicators of vascular/systemic inflammation. Results. Both interventions increased VO2peak (P=0.002) but had no effect on body fat (P=0.20). Although both treatments improved glucose tolerance (P=0.06) and insulin iAUC (P=0.02), VCAM increased (P=0.01). There was no effect of either treatment on ICAM, hs-CRP, or fasting as well as postprandial FMD. However, 57% of people improved fasting and iAUC FMD following CONT compared with only 42% after INT exercise (each: P=0.04). Elevated VCAM was linked to blunted fasting FMD after training (r=−0.38, P=0.05). But, there was no correlation between fasting FMD or postprandial FMD with glucose tolerance (r=0.17, P=0.39 and r=0.02, P=0.90, respectively) or insulin iAUC following training (r=0.34, P=0.08 and r=0.04, P=0.83, respectively). Conclusion. Endothelial function is not improved consistently after short-term training, despite improvements in glucose and insulin responses to the OGTT in obese adults with prediabetes.

2014 ◽  
Vol 307 (3) ◽  
pp. H418-H425 ◽  
Author(s):  
Ralph R. Scholten ◽  
Marc E. A. Spaanderman ◽  
Daniel J. Green ◽  
Maria T. E. Hopman ◽  
Dick H. J. Thijssen

Blood flow patterns in conduit arteries characterized by high levels of retrograde shear stress can be detrimental for vascular health. In this study we examined whether retrograde shear rate and endothelial function are related in healthy and formerly preeclamptic (PE) women and whether this relationship is altered by exercise training. Formerly PE women (32 ± 4 yr, n = 20) and controls (32 ± 4 yr, n = 20), all 6–12 mo postpartum, performed 12-wk aerobic exercise training. We measured brachial artery shear rate (SR) and endothelial function by flow-mediated dilation (FMD, echo-Doppler). We additionally performed power spectral analysis of heart rate variability and calculated low-frequency/high-frequency (LF/HF) ratio. Antegrade SR was not different between groups, while retrograde SR was significantly higher and FMD% lower in PE women compared with controls (both P < 0.05). Retrograde shear correlated strongly with FMD% in PE women and controls ( P < 0.05). LF/HF ratio inversely correlated with brachial artery retrograde SR and FMD% (both P < 0.05) in PE women and controls. Exercise training reduced retrograde shear, improved FMD%, and reduced LF/HF ratios similarly in both groups (all P < 0.05). Training-induced changes in retrograde SR correlated with changes in FMD% and LF/HF ratio. A higher brachial artery retrograde SR relates to lower brachial artery endothelial function, in both controls and formerly PE women. Exercise training improves retrograde SR, while the magnitude of this change correlated strongly with improvements in FMD and reductions in LF/HF ratio. Therefore, the impact of PE and exercise training on endothelial health may, at least partly, be related to retrograde shear rate.


2021 ◽  
Vol 2 (Supplement_1) ◽  
pp. A23-A24
Author(s):  
S Centofanti ◽  
L Heilbronn ◽  
G Wittert ◽  
A Coates ◽  
J Dorrian ◽  
...  

Abstract Nightwork disrupts circadian rhythms and impairs glucose metabolism, increasing the risk for type 2 diabetes. We investigated eliminating or reducing the amount of food consumed during simulated nightwork as a countermeasure to reduce the impact of circadian disruption on glucose metabolism. N=52 healthy, non-shiftworking participants (24.4±4.9 years; 26 Females; BMI 23.8±2.5kg/m2) underwent a 7-day laboratory protocol with an 8h TIB baseline sleep, followed by 4 simulated nightshifts with 7h TIB daytime sleep and an 8h TIB recovery sleep in groups of 4 participants. Each group was randomly assigned to a meal-at-midnight (n=17, 30% energy requirements), snack-at-midnight (n=16, 10% energy requirements) or no-eating-at-midnight (n=19) condition. Total 24h energy and macronutrient intake were constant across conditions. Standard oral glucose tolerance tests (OGTT) were conducted on day2 (baseline), and day7 (recovery). Plasma was sampled at -15, 0, 15, 30, 60, 90, 120, 150 mins, assayed for glucose and insulin. Area under the curve (AUC) was the calculated. Mixed model analyses of glucose AUC found a condition-by-day interaction (p&lt;0.001). Glucose responses to OGTT did not change with nightwork in the no-eating-at-midnight condition (p=0.219) but worsened in the meal-at-midnight (p&lt;0.001) and snack-at-midnight (p=0.022) conditions. Insulin AUC was different by condition (p=0.047). Insulin was highest after nightwork in the no-eating-at-midnight compared to meal-at-midnight (p=0.014) but not snack-at-midnight (p=0.345). Glucose tolerance was impaired by eating-at-midnight, associated with a lower than expected insulin response. Further work is required to determine the effect of meal or snack composition as a strategy to mitigate adverse metabolic effects of nightwork.


2020 ◽  
pp. 1-6
Author(s):  
Paul Park ◽  
Victor Chang ◽  
Hsueh-Han Yeh ◽  
Jason M. Schwalb ◽  
David R. Nerenz ◽  
...  

OBJECTIVEIn 2017, Michigan passed new legislation designed to reduce opioid abuse. This study evaluated the impact of these new restrictive laws on preoperative narcotic use, short-term outcomes, and readmission rates after spinal surgery.METHODSPatient data from 1 year before and 1 year after initiation of the new opioid laws (beginning July 1, 2018) were queried from the Michigan Spine Surgery Improvement Collaborative database. Before and after implementation of the major elements of the new laws, 12,325 and 11,988 patients, respectively, were treated.RESULTSPatients before and after passage of the opioid laws had generally similar demographic and surgical characteristics. Notably, after passage of the opioid laws, the number of patients taking daily narcotics preoperatively decreased from 3783 (48.7%) to 2698 (39.7%; p < 0.0001). Three months postoperatively, there were no differences in minimum clinically important difference (56.0% vs 58.0%, p = 0.1068), numeric rating scale (NRS) score of back pain (3.5 vs 3.4, p = 0.1156), NRS score of leg pain (2.7 vs 2.7, p = 0.3595), satisfaction (84.4% vs 84.7%, p = 0.6852), or 90-day readmission rate (5.8% vs 6.2%, p = 0.3202) between groups. Although there was no difference in readmission rates, pain as a reason for readmission was marginally more common (0.86% vs 1.22%, p = 0.0323).CONCLUSIONSThere was a meaningful decrease in preoperative narcotic use, but notably there was no apparent negative impact on postoperative recovery, patient satisfaction, or short-term outcomes after spinal surgery despite more restrictive opioid prescribing. Although the readmission rate did not significantly increase, pain as a reason for readmission was marginally more frequently observed.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 548
Author(s):  
Lisa M. Gunter ◽  
Rachel J. Gilchrist ◽  
Emily M. Blade ◽  
Rebecca T. Barber ◽  
Erica N. Feuerbacher ◽  
...  

Social isolation likely contributes to reduced welfare for shelter-living dogs. Several studies have established that time out of the kennel with a person can improve dogs’ behavior and reduce physiological measures of stress. This study assessed the effects of two-and-a-half-hour outings on the urinary cortisol levels and activity of dogs as they awaited adoption at four animal shelters. Dogs’ urine was collected before and after outings for cortisol:creatinine analysis, and accelerometer devices were used to measure dogs’ physical activity. In total, 164 dogs participated in this study, with 793 cortisol values and 3750 activity measures used in the statistical analyses. We found that dogs’ cortisol:creatinine ratios were significantly higher during the afternoon of the intervention but returned to pre-field trip levels the following day. Dogs’ minutes of low activity were significantly reduced, and high activity significantly increased during the outing. Although dogs’ cortisol and activity returned to baseline after the intervention, our findings suggest that short-term outings do not confer the same stress reduction benefits as previously shown with temporary fostering. Nevertheless, it is possible that these types of outing programs are beneficial to adoptions by increasing the visibility of dogs and should be further investigated to elucidate these effects.


2018 ◽  
Vol 50 (05) ◽  
pp. 408-413 ◽  
Author(s):  
Sema Dogansen ◽  
Gulsah Yalin ◽  
Seher Tanrikulu ◽  
Sema Yarman

AbstractIn this study, we aimed to evaluate the presence of glucose metabolism abnormalities and their impact on IGF-1 levels in patients with acromegaly. Ninety-three patients with acromegaly (n=93; 52 males/41 females) were included in this study. Patients were separated into three groups such as; normal glucose tolerance (n=23, 25%), prediabetes (n=38, 41%), and diabetes mellitus (n=32, 34%). Insulin resistance was calculated with homeostasis model assessment (HOMA). HOMA-IR > 2.5 or ≤2.5 were defined as insulin resistant or noninsulin resistant groups, respectively. Groups were compared in terms of factors that may be associated with glucose metabolism abnormalities. IGF-1% ULN (upper limit of normal)/GH ratios were used to evaluate the impact of glucose metabolism abnormalities on IGF-1 levels. Patients with diabetes mellitus were significantly older with an increased frequency of hypertension (p<0.001, p=0.01, respectively). IGF-1% ULN/GH ratio was significantly lower in prediabetes group than in normal glucose tolerance group (p=0.04). Similarly IGF-1% ULN/GH ratio was significantly lower in insulin resistant group than in noninsulin resistant group (p=0.04). Baseline and suppressed GH levels were significantly higher in insulin resistant group than in noninsulin resistant group (p=0.024, p<0.001, respectively). IGF-1% ULN/GH ratio is a useful marker indicating glucose metabolism disorders and IGF-1 levels might be inappropriately lower in acromegalic patients with insulin resistance or prediabetes. We suggest that IGF-1 levels should be re-evaluated after the improvement of insulin resistance or glycemic regulation for the successful management of patients with acromegaly.


1996 ◽  
Vol 270 (6) ◽  
pp. R1371-R1379 ◽  
Author(s):  
K. L. Teff ◽  
K. Engelman

In animals, bypassing the oropharyngeal receptors by intragastric administration of glucose results in glucose intolerance. To determine whether the absence of oral sensory stimulation alters glucose tolerance in humans, we monitored plasma levels of glucose and hormones after intragastric administration of glucose, with and without subjects tasting food. Plasma glucose area under the curve (AUC) was significantly lower after oral sensory stimulation (3,433 +/- 783 vs. 5,643 +/- 1,397 mg.dl-1. 195 min-1; P < 0.03; n = 8). Insulin and C-peptide AUCs were higher during the first one-half of the sampling period (insulin, 5,771 +/- 910 vs. 4,295 +/- 712 microU. ml-1.75 min-1; P < 0.05; C-peptide, 86 +/- 10 vs. 66 +/- 9 ng.ml-1. 75 min-1; P < 0.03) and lower during the second one-half of the sampling period compared with the control condition (1,010 +/- 233 vs. 2,106 microU.ml-1. 120 min-1; P < 0.025; 31 +/- 8 vs. 56 +/- 18 ng.ml-1. 120 min-1; P < 0.05; insulin and C-peptide, respectively). Oral sensory stimulation markedly increased plasma glucagon compared with the control condition (1,258 +/- 621 vs. -2,181 +/- 522 pg.ml-1. 195 min-1; P < 0.002). These data provide evidence in humans that oral sensory stimulation influences glucose metabolism and suggest that the mechanisms elicited by this cephalic stimulation are necessary for normal glucose homeostasis.


2020 ◽  
pp. 0000-0000
Author(s):  
Thomas Smith ◽  
G. Ryan Huston ◽  
Richard M. Morton

This study extends the employee stock option literature by examining the impact of accrual management, before and after stock option exercise, on the timing of sales of shares acquired at exercise. We find evidence that accrual management prior to exercise is positively associated with the decision to quickly sell shares after exercise, facilitating a short-term exercise-and-sell strategy. Alternatively, we find that, among executives initially choosing to hold at exercise, tax incentives appear to drive both post-exercise accrual management and the timing of sale transactions. Specifically, our results suggest that executives use income-increasing accruals during the holding period to bolster their stock option gains sand then sell immediately after satisfying the minimum (twelve month) holding period for long-term capital gain treatment. These results provide context for prior research that found evidence of earnings management leading up to option exercise on the expectation of an immediate sale.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
G Kleinnibbelink ◽  
N M Panhuyzen-Goedkoop ◽  
H G Hulshof ◽  
A P J Van Dijk ◽  
K P George ◽  
...  

Abstract Funding Acknowledgements No financial support Background Chronic exercise training leads to cardiac remodelling; the so-called Athlete’s Heart. Previous studies are often limited by a cross-sectional design whilst longitudinal training studies are often constrained to the assessment of non-athletes. Echocardiography provides comprehensive assessment of mechanics and may give additional insight into short-term changes in training volume in the elite athlete. Purpose To examine the impact of a short-term (9 months) increase in training volume on cardiac structure and mechanics in elite international competing rowers. Methods As part of the work-up to the 2012 Olympic Games, twenty-seven elite rowers (26.4 ± 3.7 years, 19 male) underwent baseline echocardiography prior to and post (9-months) a planned increase in training volume. Conventional echocardiographic indices including mechanics of all cardiac chambers were assessed. Results In response to increased training volume, there was a significant increase in left ventricular (LV) size (IVSd 9.2 ± 1.2 to 9.7 ± 1.1 mm, p = 0.001; PWd 8.3 ± 1.3 to 8.7 ± 1.4 mm, p = 0.013), LVIDd (56.5 ± 4.6 to 57.9 ± 4.2 mm, p = 0.001), and LVMi (90.2 ± 17.8 to 100.8 ± 17.1 g/m2, p = 0.000), see table. There was a significant increase in LV twist (9.2 ± 4.5 to 11.2 ± 4.7 °, p = 0.04; basal rotation -4.4 ± 3.1 to -4.5 ± 3.4 °, p = 0.84; apical rotation 5.8 ± 3.4 to 7.1 ± 3.7 °, p = 0.011), see figure, however, there were no changes in any other conventional indices of function or any other cardiac mechanics. There was a significant increase in left atrial (LA) volume (58.8 ± 15.2 to 65.3 ± 17.6 mm, p = 0.01) whilst no changes were observed in right heart structure. Conclusion An increase in exercise training volume in elite rowers across 9-months induced mild balanced structural remodelling of the LV and LA with a concomitant increase in LV twist. Contradictory to findings in non-athletes, there was no increase in right ventricular or atrial structure or function which may be representative of the elite athlete status and possibly already at threshold for physiological adaptation. Abstract P784 Figure.


2016 ◽  
Vol 115 (10) ◽  
pp. 1875-1884 ◽  
Author(s):  
Mark Hopkins ◽  
Catherine Gibbons ◽  
Phillipa Caudwell ◽  
John E. Blundell ◽  
Graham Finlayson

AbstractAlthough the effects of dietary fat and carbohydrate on satiety are well documented, little is known about the impact of these macronutrients on food hedonics. We examined the effects ofad libitumand isoenergetic meals varying in fat and carbohydrate on satiety, energy intake and food hedonics. In all, sixty-five overweight and obese individuals (BMI=30·9 (sd3·8) kg/m2) completed two separate test meal days in a randomised order in which they consumed high-fat/low-carbohydrate (HFLC) or low-fat/high-carbohydrate (LFHC) foods. Satiety was measured using subjective appetite ratings to calculate the satiety quotient. Satiation was assessed by intake atad libitummeals. Hedonic measures of explicit liking (subjective ratings) and implicit wanting (speed of forced choice) for an array of HFLC and LFHC foods were also tested before and after isoenergetic HFLC and LFHC meals. The satiety quotient was greater afterad libitumand isoenergetic meals during the LFHC condition compared with the HFLC condition (P=0·006 andP=0·001, respectively), whereasad libitumenergy intake was lower in the LFHC condition (P<0·001). Importantly, the LFHC meal also reduced explicit liking (P<0·001) and implicit wanting (P=0·011) for HFLC foods compared with the isoenergetic HFLC meal, which failed to suppress the hedonic appeal of subsequent HFLC foods. Therefore, when coupled with increased satiety and lower energy intake, the greater suppression of hedonic appeal for high-fat food seen with LFHC foods provides a further mechanism for why these foods promote better short-term appetite control than HFLC foods.


Sign in / Sign up

Export Citation Format

Share Document