scholarly journals Preparation of a Composite Material AC/Cu-BTC with Improved Water Stability and n-Hexane Vapor Adsorption

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Manlin Li ◽  
Weiqiu Huang ◽  
Bo Tang ◽  
Fujiao Song ◽  
Aihua Lv ◽  
...  

The Cu-BTC, a widely studied metal-organic framework (MOF), has been applied in various fields such as gas adsorption, separation, storage, and catalysis. However, the Cu-BTC collapses due to the replacement of the organic linker by water molecules under humid conditions, which limits its practical application in industries. In consideration of the undesirable water effect on the framework stability of Cu-BTC, a stable activated carbon (AC) was incorporated into it by the in situ method to yield a composite material AC/Cu-BTC with high water stability. XRD and SEM patterns proved that the AC7%/Cu-BTC successfully retains its crystal structure after being exposed to water molecules. The adsorption amount of n-hexane vapor of the AC7%/Cu-BTC after water vapor adsorption-thermal desorption is 307% of that of the Cu-BTC. The addition of the AC changes the adsorption active sites and reduces the strong affinity of the Cu-BTC to water molecules, resulting in the AC7%/Cu-BTC having a much lower adsorption rate for water vapor than the Cu-BTC. Therefore, the AC7%/Cu-BTC can be protected from a large amount of water molecules and avoid structural collapse caused by the disconnection between the copper center and the organic linker. The composite displays a potential value for stable applications of MOF-based materials under ambient conditions.

2019 ◽  
Vol 43 (2) ◽  
pp. 807-812 ◽  
Author(s):  
Hailong Xu ◽  
Lu Feng ◽  
Wentao Huang ◽  
Qiaoyun Wang ◽  
Hong Zhou

A new nickel phosphonate has been synthesized, and its thermal properties, water stability, water vapor adsorption and proton conduction have been investigated.


Author(s):  
Hemant Mittal ◽  
Ali Al-Alili ◽  
Saeed M. Alhassan

Abstract Deliquescent salts have high water vapor adsorption capacity, but they dissolve in water by forming crystalline hydrates. That restricts their use in different water vapor adsorption applications. However, this limitation can be overcome by incorporating deliquescent salts within a polymer matrix which will keep the salt solution in place. Furthermore, if the polymer matrix used is also capable of adsorbing water vapor, it will further improve the overall performance of desiccant system. Therefore, in this work, we are proposing the synthesis and use of a highly effective new solid polymer desiccant material, i.e. superporous hydrogel (SPHs) of poly(sodium acrylate-co-acrylic acid (P(SA-co-AA)), and subsequently its composite with deliquescent salt, i.e. calcium chloride (CaCl2), to adsorb water vapors from humid air without the dissolution of the salt in the adsorbed water. Parental PAA-SPHs matrix alone exhibited an adsorption capacity of 1.02 gw/gads which increased to 3.35 gw/gads after incorporating CaCl2 salt in the polymer matrix. Both materials exhibited type-III adsorption isotherm and the experimental isotherm data fitted to the Guggenheim, Anderson and Boer (GAB) isotherm model. However, the adsorption kinetics followed linear driving force model which suggested that this extremely high adsorption capacity was due to the diffusion of water molecules into the interconnected pores of SPHs via capillary channels followed by the attachment of adsorbed water molecules to the CaCl2 salt present in the polymer matrix. Furthermore, the adsorbents were used successively for six cycles of adsorption with a very little loss in adsorption capacity. Therefore, the proposed polymer desiccant material overcomes the problem of dissolution of deliquescent salts and opens the doors for a new class of highly effective solid desiccant material.


Author(s):  
Aasif A. Dabbawala ◽  
K. Suresh kumar Reddy ◽  
Hemant Mittal ◽  
Yasser Al Wahedi ◽  
Balasubramanian V. Vaithilingam ◽  
...  

Fuel ◽  
2017 ◽  
Vol 197 ◽  
pp. 326-333 ◽  
Author(s):  
Cheng Wang ◽  
Qi Liu ◽  
Douglas G. Ivey ◽  
Thomas H. Etsell

2006 ◽  
Vol 32 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Jun Kobayashi ◽  
Takahiro Imamura ◽  
Masaaki Ichikawa ◽  
Mitsuhiro Kubota ◽  
Fujio Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document