scholarly journals Variational and Numerical Analysis for Frictional Contact Problem with Normal Compliance in Thermo-Electro-Viscoelasticity

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Mustapha Bouallala ◽  
El Hassan Essoufi ◽  
Mohamed Alaoui

In this paper, we consider a mathematical model of a contact problem in thermo-electro-viscoelasticity with the normal compliance conditions and Tresca’s friction law. We present a variational formulation of the problem, and we prove the existence and uniqueness of the weak solution. We also study the numerical approach using spatially semidiscrete and fully discrete finite element schemes with Euler’s backward scheme. Finally, we derive error estimates on the approximate solutions.

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Mikaël Barboteu ◽  
David Danan

We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an obstacle. The contact is modelled with a combination of a normal compliance and a normal damped response law associated with a slip rate-dependent version of Coulomb’s law of dry friction. We derive a variational formulation and an existence and uniqueness result of the weak solution of the problem is presented. Next, we introduce a fully discrete approximation of the variational problem based on a finite element method and on an implicit time integration scheme. We study this fully discrete approximation schemes and bound the errors of the approximate solutions. Under regularity assumptions imposed on the exact solution, optimal order error estimates are derived for the fully discrete solution. Finally, after recalling the solution of the frictional contact problem, some numerical simulations are provided in order to illustrate both the behavior of the solution related to the frictional contact conditions and the theoretical error estimate result.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abderrezak Kasri

Abstract The aim of this paper is to study a quasistatic contact problem between an electro-elastic viscoplastic body with damage and an electrically conductive foundation. The contact is modelled with an electrical condition, normal compliance and the associated version of Coulomb’s law of dry friction in which slip dependent friction is included. We derive a variational formulation for the model and, under a smallness assumption, we prove the existence and uniqueness of a weak solution.


2003 ◽  
Vol 2003 (2) ◽  
pp. 87-114 ◽  
Author(s):  
J. R. Fernández ◽  
M. Sofonea

We consider the quasistatic Signorini′s contact problem with damage for elastic-viscoplastic bodies. The mechanical damage of the material, caused by excessive stress or strain, is described by a damage function whose evolution is modeled by an inclusion of parabolic type. We provide a variational formulation for the mechanical problem and sketch a proof of the existence of a unique weak solution of the model. We then introduce and study a fully discrete scheme for the numerical solutions of the problem. An optimal order error estimate is derived for the approximate solutions under suitable solution regularity. Numerical examples are presented to show the performance of the method.


2013 ◽  
Vol 23 (2) ◽  
pp. 263-276 ◽  
Author(s):  
Mikaël Barboteu ◽  
Krzysztof Bartosz ◽  
Piotr Kalita

We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The first approach is based on the nonconvex proximal bundle method, whereas the second one deals with the approximation of a nonconvex problem by a sequence of nonsmooth convex programming problems. Some numerical experiments are realized to compare the two numerical approaches.


2013 ◽  
Vol 5 (04) ◽  
pp. 494-509 ◽  
Author(s):  
Yunqing Huang ◽  
Jichun Li ◽  
Yanping Lin

AbstractIn this paper, the time-dependent Maxwell’s equations used to modeling wave propagation in dispersive lossy bi-isotropic media are investigated. Existence and uniqueness of the modeling equations are proved. Two fully discrete finite element schemes are proposed, and their practical implementation and stability are discussed.


Sign in / Sign up

Export Citation Format

Share Document