scholarly journals Designing a New Dynamic Mechanical Analysis (DMA) System for Testing Viscoelastic Materials at High Frequencies

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Roja Esmaeeli ◽  
Haniph Aliniagerdroudbari ◽  
Seyed Reza Hashemi ◽  
Chiran JBR ◽  
Siamak Farhad

The aim of this study is to design a new dynamic mechanical analysis (DMA) measurement system that can operate for shear tests at frequencies as high as 10 kHz with strain amplitudes sufficient for viscoelastic materials operating in high-frequency deformation applications, such as tire rubbers. The available DMA systems in market cannot effectively operate for accurate and direct measurement of viscoelastic material properties for applications dealing with high-frequency deformation of materials. Due to this, the available DMA systems are used for indirect measurements at low frequencies and low temperatures, followed by using time-temperature superposition principle to predict the properties at high frequencies. The goal of this study is to make the range of the test broad enough to eliminate the use of the time-temperature superposition principle in the determination of properties of viscoelastic materials. Direct measurement of viscoelastic material properties and increasing the accuracy of results are the main motivations to design a new DMA system. For this purpose, the state-of-the-art technologies to achieve high frequencies and strain amplitudes as well as instrumentation and control of the system are studied. The design process is presented in this paper.

Author(s):  
Roja Esmaeeli ◽  
Haniph Aliniagerdroudbari ◽  
Seyed Reza Hashemi ◽  
Hammad Al-Shammari ◽  
Muapper Alhadri ◽  
...  

Abstract The quality of the collected data from a measurement system affects eventual decision making process. Therefore, the reliability of any measurement system is an important factor to be studied. Gauge repeatability and reproducibility (Gauge R&R) is the standard method to evaluate the measurement system and assess the adequacy of variation in the measurement data. Gauge R&R is a statistical tool which evaluates two main characteristics of the measurement system: repeatability and reproducibility. The Dynamic Mechanical Analysis (DMA) is a common measurement system for studying the dynamic mechanical properties of viscoelastic materials such as polymers. The newly developed High Frequency Dynamic Mechanical Analysis (HFDMA) is able to directly run the simple shear test at high frequencies without changing the specimen temperature. The complex shear modulus and damping factor of the viscoelastic materials are reported by the HFDMA system. In this study the uni-variable Gauge R&R study based on Analysis of Variance (ANOVA) is done on each measured characteristic of the HFDMA measurement system. The source of variations for each characteristic is distinguished. Then the multivariate Gauge R&R based on the Multivariate Analysis of Variance (MANOVA) is done and the percentage of multivariate Gauge R&R for the measurement with the multiple variables is reported. The results indicate that the HFDMA measurements are both repeatable and reproducible. Thus, the new HFDMA can be used as a measurement system to measure the mechanical properties of viscoelastic materials at high frequencies.


Soft Matter ◽  
2021 ◽  
Author(s):  
Julie Diani ◽  
Eleonore Strauch-hausser

An amorphous acrylate interpenetrated polymer network (IPN) was made in lab and tested by dynamic mechanical analysis. Using frequency sweep tests, it was shown that the time-temperature superposition principle applies...


2019 ◽  
Author(s):  
Ketan Khare ◽  
Frederick R. Phelan Jr.

<a></a><a>Quantitative comparison of atomistic simulations with experiment for glass-forming materials is made difficult by the vast mismatch between computationally and experimentally accessible timescales. Recently, we presented results for an epoxy network showing that the computation of specific volume vs. temperature as a function of cooling rate in conjunction with the time–temperature superposition principle (TTSP) enables direct quantitative comparison of simulation with experiment. Here, we follow-up and present results for the translational dynamics of the same material over a temperature range from the rubbery to the glassy state. Using TTSP, we obtain results for translational dynamics out to 10<sup>9</sup> s in TTSP reduced time – a macroscopic timescale. Further, we show that the mean squared displacement (MSD) trends of the network atoms can be collapsed onto a master curve at a reference temperature. The computational master curve is compared with the experimental master curve of the creep compliance for the same network using literature data. We find that the temporal features of the two data sets can be quantitatively compared providing an integrated view relating molecular level dynamics to the macroscopic thermophysical measurement. The time-shift factors needed for the superposition also show excellent agreement with experiment further establishing the veracity of the approach</a>.


Sign in / Sign up

Export Citation Format

Share Document