scholarly journals Dynamical Model Identification for a Small-Scale Unmanned Helicopter Using an Integrated Approach

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Ma ◽  
Li Ding ◽  
Kailei Liu ◽  
Hongtao Wu

This article presents an integrated approach for the parameter identification of a small-scale unmanned helicopter. With the flight experiment data collection and preprocessing, a hybrid identified algorithm combining the improved artificial bee colony algorithm and prediction error method is proposed to obtain the unknown dynamical parameters of the linear model. The proposed algorithm is valid to use thanks to an adaptive search equation, a novel probability-scaling method, and a chaotic operator and has a good performance in search speed and quality. Afterwards, we design a wind tunnel test to modify the main rotor time constant of the identified model. The identified accuracy and feasibility of the proposed approach are verified by making a time-domain comparison with three other algorithms. Results show that the dynamical characteristics of the helicopter can be determined accurately by the identified model. And the proposed approach is propitious to enhance the reliability and availability of the identified dynamical model.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Li Ding ◽  
Hongtao Wu ◽  
Yu Yao

The purpose of this paper is devoted to developing a chaotic artificial bee colony algorithm (CABC) for the system identification of a small-scale unmanned helicopter state-space model in hover condition. In order to avoid the premature of traditional artificial bee colony algorithm (ABC), which is stuck in local optimum and can not reach the global optimum, a novel chaotic operator with the characteristics of ergodicity and irregularity was introduced to enhance its performance. With input-output data collected from actual flight experiments, the identification results showed the superiority of CABC over the ABC and the genetic algorithm (GA). Simulations are presented to demonstrate the effectiveness of our proposed algorithm and the accuracy of the identified helicopter model.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Rui Ma ◽  
Li Ding ◽  
Hongtao Wu

This article presents design and optimization results from an implementation of a novel disturbance decoupling control strategy for a small-scale unmanned helicopter. Such a strategy is based on the active disturbance rejection control (ADRC) method. It offers an appealing alternative to existing control approaches for helicopters by combining decoupling and disturbance rejection without a detailed plant dynamics. The tuning of the control system is formulated as a function optimization problem to capture various design considerations. In comparison with several different iterative search algorithms, an artificial bee colony (ABC) algorithm is selected to obtain the optimal control parameters. For a fair comparison of control performance, a well-designed LQG controller is also optimized by the proposed method. Comparison results from an attitude tracking simulation against wind disturbance show the significant advantages of the proposed optimization control for this control application.


2017 ◽  
Vol 121 (1246) ◽  
pp. 1879-1896 ◽  
Author(s):  
R. Ma ◽  
H. Wu ◽  
L. Ding

ABSTRACTIn this paper, an efficient approach to design and optimize a flight controller of a small-scale unmanned helicopter is proposed. Given the identified helicopter model, the Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) robust control method is applied for trajectory tracking and attitude control of the helicopter with a two-loop hierarchical control architecture. Since the performance of the controller extremely depends on its weighting matrices, the Artificial Bee Colony (ABC) algorithm is introduced to automatically select the parameters of the matrices. Comparative studies between optimal algorithms are also carried out. A series of flight experiments and simulations are conducted to investigate the effectiveness and robustness of the proposed optimised controller.


2021 ◽  
Vol 16 (4) ◽  
pp. 675-688
Author(s):  
Xinfan Yin ◽  
Xianmin Peng ◽  
Guichuan Zhang ◽  
Binghui Che ◽  
Chang Wang

Due to the limitation of the size and power, micro unmanned aerial vehicle (MUAV) usually has a small load capacity. Aiming at the problems of limited installation space and easy being interfered in flight attitude measurement of the small-scale unmanned helicopter (SUH), a low-cost and lightweight flight control system of the SUH based on ARM Cortex-M4 core microcontroller and Micro-Electro-Mechanical Systems (MEMS) sensors is developed in this paper. On this basis, in order to realize the autonomous flight control of SUH, firstly, the mathematical model of the SUH is given by using the Newton-Euler formulation. Secondly, a cascade flight controller consisting of the attitude controller and the position controller is developed based on linear active disturbance rejection control (LADRC) and proportional-integral-derivative (PID) control. Furthermore, simulations are conducted to validate the performance of the attitude controller and the position controller in MATLAB/SIMULINK simulation environment. Finally, based on the Align T-REX 470L SUH experimental platform, the hovering experiment and the route flight experiment are also carried out to validate the performance of the designed flight control system hardware and the proposed control algorithm. The results show that the flight control system designed in this paper has high reliability and strong anti-interference ability, and the control algorithm can effectively and reliably realize the attitude stabilization control and route control of the SUH, with high control accuracy and small error.


2016 ◽  
Author(s):  
Fabrice Chane Ming ◽  
Damien Vignelles ◽  
Fabrice Jegou ◽  
Gwenael Berthet ◽  
Jean-Batiste Renard ◽  
...  

Abstract. Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological global positioning system (GPS) sondes, ozonesondes and GPS radio occultation data, are examined to identify gravity-wave (GW) induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaign. Observations reveal signatures of GWs with short vertical wavelengths less than 4 km in dynamical parameters and tracer constituents which are also correlated with the presence of thin layers of strong local enhancements of aerosol concentrations in the upper troposphere and the lower stratosphere. In particular, this is evident from a case study above Ile du Levant (43.02 °N, 6.46 °E) on 26–29 July 2013. Observations show a strong activity of dominant mesoscale inertia GWs with horizontal and vertical wavelengths of 370–510 km and 2–3 km respectively, and periods of 10–13 h propagating southward at altitudes of 13–20 km and eastward above 20 km during 27–28 July which is also captured by the European Center for Medium range Weather Forecasting (ECMWF) analyses. Ray-tracing experiments indicate the jet-front system to be the source of observed GWs. Simulated vertical profiles of dynamical parameters with large stratospheric vertical wind maximum oscillations ± 40 mms−1 are produced for the dominant mesoscale GW using the simplified linear GW theory. Parcel advection method reveals signatures of GWs in the ozone mixing ratio and the specific humidity. Simulated vertical wind perturbations of the dominant GW and small-scale perturbations of aerosol concentration (aerosol size of 0.2–0.7 μm) are in phase in the lower stratosphere. Present results support the importance of vertical wind perturbations in the GW-aerosol relation. The observed mesoscale GW induces a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.


Sign in / Sign up

Export Citation Format

Share Document