scholarly journals Identification of the Anisotropic Elastic Parameters of NiCrAlY Coating by Combining Nanoindentation and Finite Element Method

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jingyu Zhai ◽  
Yugang Chen ◽  
Xinyuan Song ◽  
Hongchun Wu ◽  
Qingkai Han

For vibration damping, coatings are prepared on surface of the structures (substrates), which constitute the coating-substrate composite structures. Elastic parameters of the coating are indispensable for the vibration and damping analysis of the composite structure. Due to the small scale of coating thickness and elastic difference compared with the substrate, the identification results are inevitably influenced by the existence of substrate. Moreover, resulting from the preparation process, elastic properties of hard coating often exhibit anisotropic properties. All the above factors bring about the difficulties of accurate identification. In this study, a method for identifying anisotropic elastic parameters of hard coatings considering substrate effect is proposed, by combining nanoindentation and finite element analysis. Based on the identification results, finite element models are established to analyze the vibration characteristics of the coating-substrate composite structure, which verify the rationality of the anisotropic elastic parameters for vibration analysis. The studies in this paper are significant to more accurately identify the mechanical parameters for establishing the dynamic model. Moreover, they lay the foundation for further optimization design of hard coating damping.

Author(s):  
Christoph Oefner ◽  
Elena Riemer ◽  
Kerstin Funke ◽  
Michael Werner ◽  
Christoph-Eckhard Heyde ◽  
...  

AbstractIn biomechanics, large finite element models with macroscopic representation of several bones or joints are necessary to analyze implant failure mechanisms. In order to handle large simulation models of human bone, it is crucial to homogenize the trabecular structure regarding the mechanical behavior without losing information about the realistic material properties. Accordingly, morphology and fabric measurements of 60 vertebral cancellous bone samples from three osteoporotic lumbar spines were performed on the basis of X-ray microtomography (μCT) images to determine anisotropic elastic parameters as a function of bone density in the area of pedicle screw anchorage. The fabric tensor was mapped in cubic bone volumes by a 3D mean-intercept-length method. Fabric measurements resulted in a high degree of anisotropy (DA = 0.554). For the Young’s and shear moduli as a function of bone volume fraction (BV/TV, bone volume/total volume), an individually fit function was determined and high correlations were found (97.3 ≤ R2 ≤ 99.1,p < 0.005). The results suggest that the mathematical formulation for the relationship between anisotropic elastic constants and BV/TV is applicable to current μCT data of cancellous bone in the osteoporotic lumbar spine. In combination with the obtained results and findings, the developed routine allows determination of elastic constants of osteoporotic lumbar spine. Based on this, the elastic constants determined using homogenization theory can enable efficient investigation of human bone using finite element analysis (FEA).


2020 ◽  
Vol 198 ◽  
pp. 01027
Author(s):  
Zhishun Pan

Bolted shear connectors are an important component to ensure that steel-concrete composite structures can work together. High-strength bolt shear connectors can replace traditional stud connectors because of their disassembly, good mechanical performance and fatigue resistance. It applied to steel-concrete composite structure. In order to study the influencing factors of the bearing capacity of high-strength bolted shear connectors, this paper uses ABAQUS finite element simulation software as a research tool to establish a reasonable finite element model to study the influence of bolt strength, bolt diameter and concrete strength on bolted shear connectors. Studies have shown that increasing the diameter, strength, and concrete strength of bolted connections can effectively increase the bolt’s shear capacity.


2007 ◽  
Vol 334-335 ◽  
pp. 453-456
Author(s):  
Wen Yuan Cheng ◽  
De Gang Cui ◽  
Yan Chang ◽  
Xiang Hui Xie

In the traditional iterative design process for composite structures, it is difficult to achieve an optimal solution even though a great effort is made. A genetic optimization system based on grid technology offers an automatic and efficient approach for composite structure redesign and optimization. A genetic algorithm system, which integrates Genetic Algorithm Optimization (GAO) software and a Finite Element Analysis (FEA) based commercial package, has been developed as a tool for composite structure design and analysis. The GAO is capable of tailoring large number of composite design variables and taking the time-consuming FEA results to calculate objective function value and conduct optimization in high accuracy. By operating the system employing the Grid technology and Artificial Neural Network (ANN) method, significant time saving in numerical analysis can be achieved. A user friendly interface has also been built in the system. In the paper, aeroelastic tailoring of a composite wing has been taken as a numerical example to demonstrate the optimization approach. The numerical results show that an optimal design has been achieved to meet the design requirement.


2012 ◽  
Vol 245 ◽  
pp. 316-322
Author(s):  
Ramadan A. Al-Madani ◽  
M. Jarnaz ◽  
K. Alkharmaji ◽  
M. Essuri

The characteristics of composite materials are of high importance to engineering applications; therefore the increasing use as a substitute for conventional materials, especially in the field of aircraft and space industries. It is a known fact that researchers use finite element programs for the design and analysis of composite structures, use of symmetrical conditions especially in complicated structures, in the modeling and analysis phase of the design, to reduce processing time, memory size required, and simplifying complicated calculations, as well as considering the response of composite structures to different loading conditions to be identical to that of metallic structures. Finite element methods are a popular method used to analyze composite laminate structures. The design of laminated composite structures includes phases that do not exist in the design of traditional metallic structures, for instance, the choice of possible material combinations is huge and the mechanical properties of a composite structure, which are anisotropic by nature, are created in the design phase with the choice of the appropriate fiber orientations and stacking sequence. The use of finite element programs (conventional analysis usually applied in the case of orthotropic materials) to analysis composite structures especially those manufactured using angle ply laminate techniques or a combination of cross and angle ply techniques, as well considering the loading response of the composite structure to be identical to that of structures made of traditional materials, has made the use of, and the results obtained by using such analysis techniques and conditions questionable. Hence, the main objective of this paper is to highlight and present the results obtained when analyzing and modeling symmetrical conditions as applied to commercial materials and that applied to composite laminates. A comparison case study is carried out using cross-ply and angle-ply laminates which concluded that, if the composition of laminate structure is pure cross-ply, the FEA is well suited for predicting the mechanical response of composite structure using principle of symmetry condition. On the other hand that is not the case for angle-ply or mixed-ply laminate structure.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2020 ◽  
Vol 92 (6) ◽  
pp. 59-65
Author(s):  
G.P. TONKIH ◽  
◽  
D.A. CHESNOKOV ◽  
◽  

Most of Russian research about composite structure fire resistance are dedicated to the composite slab behavior. The composite beams fire resistance had been never investigated in enough volume: the temperature evaluation within the scope of the actual Russian design codes leads to the significant reduction in the shear connection strength. Meanwhile, there no correlation between the strength decreasing and type of the shear connection. The article provides an overview of the relevant researches and offers some approaches which could take into account bearing capacity reduction of the shear connectors within composite structures design.


2012 ◽  
Vol 229-231 ◽  
pp. 613-616
Author(s):  
Yan Jue Gong ◽  
Yuan Yuan Zhang ◽  
Fu Zhao ◽  
Hui Yu Xiang ◽  
Chun Ling Meng ◽  
...  

As an important part of the vertical axis wind turbine, the support structure should have high strength and stiffness. This article adopts finite element method to model a kind of tower structure of the vertical axis wind turbine and carry out static and modal analysis. The static and dynamic characteristic results of tower in this paper provide reference for optimization design the support structure of wind turbine further.


2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


2012 ◽  
Vol 497 ◽  
pp. 89-93
Author(s):  
Liang Liang Yuan ◽  
Ke Hua Zhang ◽  
Li Min

In order to process heterotype hole of workpiece precisely, an open abrasive flow polish machine is designed, and the optimization design of machine frame is done for low cost. Firstly, basing on the parameters designed with traditional ways, three-dimensional force model is set up with the soft of SolidWorks. Secondly, the statics and modal analysis for machine body have been done in Finite element methods (FEM), and then the optimization analysis of machine frame has been done. At last, the model of rebuild machine frame has been built. Result shows that the deformation angle value of machine frame increased from 0.72′ to 1.001′, the natural frequency of the machine decreased from 75.549 Hz to 62.262 Hz, the weight of machine decreased by 74.178 Kg after optimization. It meets the strength, stiffness and angel stiffness requirement of machine, reduces the weight and cost of machine.


Sign in / Sign up

Export Citation Format

Share Document