scholarly journals Finite element analysis of bolt shear connection of steel-concrete composite structure

2020 ◽  
Vol 198 ◽  
pp. 01027
Author(s):  
Zhishun Pan

Bolted shear connectors are an important component to ensure that steel-concrete composite structures can work together. High-strength bolt shear connectors can replace traditional stud connectors because of their disassembly, good mechanical performance and fatigue resistance. It applied to steel-concrete composite structure. In order to study the influencing factors of the bearing capacity of high-strength bolted shear connectors, this paper uses ABAQUS finite element simulation software as a research tool to establish a reasonable finite element model to study the influence of bolt strength, bolt diameter and concrete strength on bolted shear connectors. Studies have shown that increasing the diameter, strength, and concrete strength of bolted connections can effectively increase the bolt’s shear capacity.

2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 479
Author(s):  
Wei Wang ◽  
Xie-dong Zhang ◽  
Fa-xing Ding ◽  
Xi-long Zhou

High-strength bolted shear connectors (HSBSCs), which can be demounted easily and efficiently during deconstruction, are recommended to replace the conventional steel studs in steel–concrete composite beams (SCCBs) to meet the requirements of sustainable development. The existing investigations on the behavior of HSBSCs mainly focus on the positive moment area of composite beams, in which the concrete slab is in compress condition. In this paper, a three-dimensional finite element model (FEM) was developed to investigate the performance of HSBSCs subjected to inverse push-off loading. Material nonlinearities and the interactions among all components were included in the FEM. The accuracy and reliability of the proposed FEM were initially validated against the available push-off test results. Load-carrying capacity and load–slip response of the HSBSCs under inverse push-off loading were further studied by the verified FEM. A parametric study was carried out to determine the influence of the concrete strength, the diameter and tensile strength of bolt and the clearance between the concrete slab and the bolt as well as the bolt pretension on the shear performance of HSBSCs. Based on the extensive parametric analyses, design recommendations for estimating the shear load at the first slip and load-bearing resistance of HSBSCs were proposed and verified.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chengzhi Wang ◽  
Xin Liu ◽  
Wei Liu ◽  
Zhiming Li

In the water resources allocation project in Pearl River Delta, in order to optimize the structural design, the deep buried tunnel adopts the composite lining structure. However, the weakest link in a complex structure is the connection between two different interfaces. This paper reports the findings of an experimental study that was undertaken to investigate the interface mechanical performance of steel self-compacting concrete composite structure subjected to cyclic loads. In this study, different shear connectors are considered, and six different specimens were designed and tested, respectively. The test is used to research the effect of the different shear connectors on the bearing capacity and interface mechanical properties of composite structure in an experimental study. According to these test results, a detailed analysis was carried out on the relationships, such as the stress-strain and load-displacement relationships for the specimen. These tests show that the shear connectors will significantly enhance the bearing capacity and interface mechanical properties of the composite structure. Among them, the comprehensive performance of the specimens using the stud-longitudinal ribs shear connectors is the best. Additionally, a finite element analysis (FEA) model was developed. The comparison of the simulation results with the experimental results shows that this FEA is applicable for this type of experiment.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2958 ◽  
Author(s):  
Jun Chen ◽  
Wei Wang ◽  
Fa-Xing Ding ◽  
Ping Xiang ◽  
Yu-Jie Yu ◽  
...  

The high-strength bolt shear connector in prefabricated concrete slab has advantages in applications as it reduces time during the construction of steel-concrete composite building structures and bridges. In this research, an innovative and advanced bolt shear connector in steel-concrete composite structures is proposed. To investigate the fundamental mechanical behavior and the damage form, 22 static push-off tests were conducted with consideration of different bolt dimensions, the reserved hole constraint condition, and the dimension of slab holes. A finite element (FE) model was established and verified by using test results, and then the model was utilized to investigate the influence of concrete strength, bolt dimension, yield strength, bolt pretension, as well as length-to-diameter ratio of high strength bolts on the performances of shear connectors. On the basis of FE simulation and test results, new design formulas for the calculation of shear resistance behavior were proposed, and comparisons were made with current standards, including AISC, EN 1994-1-1, GB 50017-2017, and relevant references, to check the calculation efficiency. It is confirmed that the proposed equation is in better agreement with the experimental results.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Wang ◽  
Xie-dong Zhang ◽  
Xi-long Zhou ◽  
Lin Wu ◽  
Hao-jie Zhu

Multi-bolt shear connectors (MBSCs), arranging bolts as a group in several rows, can be applied in prefabricated steel–concrete composite beams or bridges (SCCBs) to reduce the construction time and meet the requirements of sustainable development. The mechanical behavior of bolt shear connectors has been broadly investigated in recent years, but they were mainly focused on the normal arrangement. The shear performance of MBSCs is not consistent with that of the same number of single bolts. In this study, a three-dimensional (3D) finite element model (FEM) was developed to investigate the multiple bolts effect and its mechanical performance. Material non-linearities and the interactions among all components were included in the FEM. The accuracy and reliability of the proposed FEM were initially verified against the available push-out test results. The validated FEM further studied the load–slip relationship, shear capacity, and shear stiffness of the MBSCs. A parametric study was carried out to determine the effect of the bolt spacing, bolt row numbers, the concrete strength, and the bolt diameter on the shear performance of MBSCs. Based on the extensive parametric analyses, design recommendations considering the multiple bolts effect for predicting the shear resistance per bolt in multi-bolt connectors were proposed and verified.


2010 ◽  
Vol 168-170 ◽  
pp. 1915-1920 ◽  
Author(s):  
Xi Mei Zhai ◽  
Yu Jin Wang ◽  
Hai Wu ◽  
Feng Fan

This paper reports experimental study of 17 high strength aluminium alloy specimens of type of 6082-T6 under axially compressed load including I-section column, rectangular hollow section. The general-purpose non-linear finite element analysis software ABAQUS is adopted to simulate the mechanical performance and overall buckling of aluminium alloy columns. The feasibility of finite element method has been verified through the comparison between the simulation results and the test finding. Finally, based on the experimental data and numerical calculation results, a useful column curve formulation to calculate the coefficient of stability of 6082-T6 aluminium alloy columns loaded by axial compressive load is derived. Comparison between column curves from proposed formulation and different code and test results has been presented, from which the validation of the proposed formulation has been verified.


2012 ◽  
Vol 166-169 ◽  
pp. 1062-1066
Author(s):  
Huang Juan Zhao ◽  
Hai Tao Fan ◽  
Zhi Xin Wang

By using finite element analysis software ABAQUS, the mechanical behavior of the beam-column joints is studied through analyzing 8 interior beam-column joints in RC frame. Meanwhile, the factors which can have effects on the behavior of the beam-column joints are also obtained. The reasonable parameters such as material constitutive, the boundary conditions and mesh types will directly affect the accuracy of finite element analysis results. The mechanical behavior of the beam-column joint in RC frame is decided by concrete strength and volumetric percentage of stirrups. With the increase of concrete strength and volumetric percentage of stirrups in joint core, the shear capacity of interior beam-column joints in RC frame is improved.


2014 ◽  
Vol 584-586 ◽  
pp. 1309-1312
Author(s):  
Hong Hai ◽  
Wei Wang

The debonding behavior at the interface between carbon fiber-reinforced plastic (CFRP) sheet and concrete is a key problem for the application of FRP plate, which has been widely applied in the civil engineering for rehabilitation and retrofitting of conventional structures. This paper presents the nonlinear finite element analysis results of the CFRP-strengthened high-strength concrete member. On the basis of the test, considering of the bond-slip relationship, explicit finite element is used for simulating the shear failure of CFRP-strengthened concrete, obtain three-dimensional deformation development diagram, describe the failure mode and the relationship between the shearing bond behavior and concrete strength. The FE results coincide with the experimental results.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3345
Author(s):  
Fangwen Wu ◽  
Shuo Liu ◽  
Chengfeng Xue ◽  
Kangkang Yang ◽  
Yanpeng Feng ◽  
...  

Perfobond rib (PBL) shear connectors, made up of the perforated steel plates with the penetrating rebars passing through the holes, are extensively adopted in steel-concrete composite structures for their excellent performance. The adequate understanding of mechanical properties for PBL connectors is of great significance for their reasonable design. In this study, a push out experiment, including 12 specimens with the parameters of concrete strength, diameter of penetrating rebars and the number of holes on perforated steel plate, was performed to explore the mechanical behavior of PBL connectors with steel fiber high strength concrete (SFHSC). The experimental results showed that the shear capacity of the PBL connectors increased with the increase in concrete strength, diameter of the penetrating rebars and the number of holes. Furthermore, a general prediction formula for the shear capacity of PBL connectors was developed, which considers the shear contribution of concrete dowels, concrete end-bearing, interfacial bonding between the perforated steel plates and concrete and the penetrating rebars as well as the enhancement effect of steel fibers. The prediction results of the equation are in good agreement with the experimental data and could provide a reference for the design of PBL connectors.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document