scholarly journals Noncommutativity in Effective Loop Quantum Cosmology

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Abraham Espinoza-García ◽  
Efraín Torres-Lomas ◽  
Sinuhé Pérez-Payán ◽  
Luis Rey Díaz-Barrón

We construct a noncommutative extension of the Loop Quantum Cosmology effective scheme for the flat FLRW model with a free scalar field via a theta deformation. Firstly, a deformation is implemented in the configuration sector, among the holonomy variable and the matter degree of freedom. We show that this type of noncommutativity retains, to some degree, key features of the Loop Quantum Cosmology paradigm for a free field. Secondly, a deformation is implemented in the momentum sector, among the momentum associated with the holonomy variable and the momentum associated with the matter field. We show that in this latter case the scalar field energy density is the same as the one in standard Loop Quantum Cosmology.

2020 ◽  
Vol 29 (06) ◽  
pp. 2050039
Author(s):  
Luis Rey Díaz-Barrón ◽  
Abraham Espinoza-García ◽  
S. Pérez-Payán ◽  
J. Socorro

In this work, we construct a noncommutative version of the Friedmann equations in the framework of effective loop quantum cosmology, extending and applying the ideas presented in a previous proposal by some of the authors. The model under consideration is a flat FRW spacetime with a free scalar field. First, noncommutativity in the momentum sector is introduced. We establish the noncommutative equations of motion and obtain the corresponding exact solutions. Such solutions indicate that the bounce is preserved, in particular, the energy density is the same as in the standard LQC. We also construct an extension of the modified Friedmann equations arising in effective LQC which incorporates corrections due to noncommutativity, and argue that an effective potential is induced. This, in turn, leads us to investigate the possibility of an inflationary era. Finally, we obtain the Friedmann and the Raychaudhuri equations when implementing noncommutativity in the configuration sector. In this case, no effective potential is induced.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yan Song ◽  
Tong-Tong Hu ◽  
Yong-Qiang Wang

Abstract We study the model of four-dimensional Einstein-Maxwell-Λ theory minimally coupled to a massive charged self-interacting scalar field, parameterized by the quartic and hexic couplings, labelled by λ and β, respectively. In the absence of scalar field, there is a class of counterexamples to cosmic censorship. Moreover, we investigate the full nonlinear solution with nonzero scalar field included, and argue that these counterexamples can be removed by assuming charged self-interacting scalar field with sufficiently large charge not lower than a certain bound. In particular, this bound on charge required to preserve cosmic censorship is no longer precisely the weak gravity bound for the free scalar theory. For the quartic coupling, for λ < 0 the bound is below the one for the free scalar fields, whereas for λ > 0 it is above. Meanwhile, for the hexic coupling the bound is always above the one for the free scalar fields, irrespective of the sign of β.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 186
Author(s):  
Mercedes Martín-Benito ◽  
Rita B. Neves

We provide an analytical solution to the quantum dynamics of a flat Friedmann-Lemaître- Robertson-Walker model with a massless scalar field in the presence of a small and positive cosmological constant, in the context of Loop Quantum Cosmology. We use a perturbative treatment with respect to the model without a cosmological constant, which is exactly solvable. Our solution is approximate, but it is precisely valid at the high curvature regime where quantum gravity corrections are important. We compute explicitly the evolution of the expectation value of the volume. For semiclassical states characterized by a Gaussian spectral profile, the introduction of a positive cosmological constant displaces the bounce of the solvable model to lower volumes and to higher values of the scalar field. These displacements are state dependent, and in particular, they depend on the peak of the Gaussian profile, which measures the momentum of the scalar field. Moreover, for those semiclassical states, the bounce remains symmetric, as in the vanishing cosmological constant case. However, we show that the behavior of the volume is more intricate for generic states, leading in general to a non-symmetric bounce.


2009 ◽  
Vol 24 (15) ◽  
pp. 1237-1246 ◽  
Author(s):  
HUA-HUI XIONG ◽  
TAOTAO QIU ◽  
YI-FU CAI ◽  
XINMIN ZHANG

In this paper, we study the possibility of model building of cyclic universe with Quintom matter in the framework of Loop Quantum Cosmology. After a general demonstration, we provide two examples, one with double-fluid and another double-scalar field, to show how such a scenario is obtained. Analytical and numerical calculations are both presented in the paper.


2012 ◽  
Vol 27 (33) ◽  
pp. 1250189 ◽  
Author(s):  
PRABIR RUDRA

In this work we have investigated the emergent scenario of the Universe described by loop quantum cosmology model, DGP brane model and Kaluza–Klein cosmology. Scalar field along with barotropic fluid as normal matter is considered as the matter content of the Universe. In loop quantum cosmology it is found that the emergent scenario is realized with the imposition of some conditions on the value of the density of normal matter in case of normal and phantom scalar field. This is a surprising result indeed considering the fact that scalar field is the dominating matter component! In case of tachyonic field, emergent scenario is realized with some constraints on the value of ρ1 for both normal and phantom tachyon. In case of DGP brane-world realization of an emergent scenario is possible almost unconditionally for normal and phantom fields. Plots and table have been generated to testify this fact. In case of tachyonic field emergent scenario is realized with some constraints on [Formula: see text]. In Kaluza–Klein cosmology emergent scenario is possible only for a closed Universe in case of normal and phantom scalar field. For a tachyonic field, realization of emergent Universe is possible for all models (closed, open and flat).


2011 ◽  
Vol 20 (02) ◽  
pp. 169-179
Author(s):  
KUI XIAO ◽  
JIAN-YANG ZHU

Considering an arbitrary, varying equation of state parameter, the thermodynamical properties of dark energy fluid in the semiclassical loop quantum cosmology scenario, where we consider the inverse volume modification, are studied. The equation of state parameters are corrected when we consider the effective behavior. Assuming that the apparent horizon has Hawking temperature, the modified entropy–area relation is obtained, and we find that this relation is different from the one which is obtained by considering the holonomy correction. Considering that the dark energy is in thermal equilibrium with the Hawking radiation of the apparent horizon, we get the expression for the entropy of the dark energy fluid.


2013 ◽  
Vol 2013 (06) ◽  
pp. 010-010 ◽  
Author(s):  
Michał Artymowski ◽  
Andrea Dapor ◽  
Tomasz Pawłowski

Author(s):  
Y. Balytskyi ◽  
D. Hoyer ◽  
A. O. Pinchuk ◽  
L. L. Williams

Abstract Novel parameterizations are presented for monopole solutions to the static, spherically-symmetric vacuum field equations of five-dimensional general relativity. First proposed by Kaluza, 5D general relativity unites gravity and classical electromagnetism with a scalar field. These monopoles correspond to bodies carrying mass, electric charge, and scalar charge. The new parameterizations provide physical insight into the nature of electric charge and scalar field energy. The Reissner-Nordstr\"om limit is compared with alternate physical interpretations of the solution parameters. The new parameterizations explore the role of scalar field energy and the relation of electric charge to scalar charge. The Kaluza vacuum equations imply the scalar field energy density is the negative of the electric field energy density for all known solutions, so the total electric and scalar field energy of the monopole is zero. The vanishing of the total electric and scalar field energy density for vacuum solutions seems to imply the scalar field can be understood as a negative-energy foundation on which the electric field is built.


Sign in / Sign up

Export Citation Format

Share Document