scholarly journals Theoretical Analysis of an Imprecise Prey-Predator Model with Harvesting and Optimal Control

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Anjana Das ◽  
M. Pal

In our present paper, we formulate and study a prey-predator system with imprecise values for the parameters. We also consider harvesting for both the prey and predator species. Then we describe the complex dynamics of the proposed model system including positivity and uniform boundedness of the system, and existence and stability criteria of various equilibrium points. Also the existence of bionomic equilibrium and optimal harvesting policy are thoroughly investigated. Some numerical simulations have been presented in support of theoretical works. Further the requirement of considering imprecise values for the set of model parameters is also highlighted.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Raid Kamel Naji ◽  
Salam Jasim Majeed

We proposed and analyzed a mathematical model dealing with two species of prey-predator system. It is assumed that the prey is a stage structure population consisting of two compartments known as immature prey and mature prey. It has a refuge capability as a defensive property against the predation. The existence, uniqueness, and boundedness of the solution of the proposed model are discussed. All the feasible equilibrium points are determined. The local and global stability analysis of them are investigated. The occurrence of local bifurcation (such as saddle node, transcritical, and pitchfork) near each of the equilibrium points is studied. Finally, numerical simulations are given to support the analytic results.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Noor S. Sh. Barhoom ◽  
Sadiq Al-Nassir

In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynamics of our proposed model.


2020 ◽  
pp. 139-146
Author(s):  
Nabaa Hassain Fakhry ◽  
Raid Kamel Naji

An ecological model consisting of prey-predator system involving the prey’s fear is proposed and studied. It is assumed that the predator species consumed the prey according to prey square root type of functional response. The existence, uniqueness and boundedness of the solution are examined. All the possible equilibrium points are determined. The stability analysis of these points is investigated along with the persistence of the system. The local bifurcation analysis is carried out. Finally, this paper is ended with a numerical simulation to understand the global dynamics of the system.


2017 ◽  
Vol 10 (06) ◽  
pp. 1750082
Author(s):  
D. Pal ◽  
G. S. Mahapatra ◽  
G. P. Samanta

In this paper, a three-species system consisting of two predators which are in mutualism with each other and preying on the same single prey is considered. Also, the prey and first predator are harvested under optimal conditions. The values of the biological parameters depend on the collection of data from the experts as well as on the nature of the environment in which prey–predator system are considered. So the biological parameters are not precise in reality. This paper presents a different approach to study the prey–predator model with imprecise biological parameters. All the possible equilibrium points are identified and the local as well as global stability criteria under impreciseness are discussed. The possibility of existence of bionomic equilibrium is discussed. The optimal harvesting policy is studied using Pontryagin’s maximum principle. Numerical examples are provided to support the proposed approach.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Dahlia Khaled Bahlool ◽  
Huda Abdul Satar ◽  
Hiba Abdullah Ibrahim

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect of varying the parameters. It is observed that the system has a chaotic dynamics.


2015 ◽  
Vol 09 (01) ◽  
pp. 1650014 ◽  
Author(s):  
G. S. Mahapatra ◽  
P. Santra

This paper presents a prey–predator model considering the predator interacting with non-refuges prey by class of functional responses. Here we also consider harvesting for only non-refuges prey. We discuss the equilibria of the model, and their stability for hiding prey either in constant form or proportional to the densities of prey population. We also investigate various possibilities of bionomic equilibrium and optimal harvesting policy. Finally we present numerical examples with pictorial presentation of the various effects of the prey–predator system parameter.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Chuanjun Dai ◽  
Min Zhao

The dynamic complexities of a prey-predator system in the presence of alternative prey with impulsive state feedback control are studied analytically and numerically. By using the analogue of the Poincaré criterion, sufficient conditions for the existence and stability of semitrivial periodic solutions can be obtained. Furthermore, the corresponding bifurcation diagrams and phase diagrams are investigated by means of numerical simulations which illustrate the feasibility of the main results.


2009 ◽  
Vol 02 (04) ◽  
pp. 463-482 ◽  
Author(s):  
CHAO LIU ◽  
QINGLING ZHANG ◽  
XUE ZHANG ◽  
XIAODONG DUAN

A differential-algebraic model which considers a prey-predator system with harvest effort on predator is proposed. By using the differential-algebraic system theory and bifurcation theory, local stability of the proposed model around the interior equilibrium is investigated. Furthermore, the instability mechanism of the proposed model due to the variation of economic interest of harvesting is studied. With the purpose of stabilizing the proposed model around the interior equilibrium and maintaining the economic interest of harvesting at an ideal level, a state feedback controller is designed. Finally, numerical simulations are carried out to show the consistency with theoretical analysis.


2020 ◽  
Author(s):  
Ibrahim M. ELmojtaba ◽  
Fatma Al-Musalhi ◽  
Asma Al-Ghassani ◽  
Nasser Al-Salti

Abstract A mathematical model with environmental transmission has been proposed and analyzed to investigate its role in the transmission dynamics of the ongoing COVID-19 outbreak. Two expressions for the basic reproduction number R0 have been analytically derived using the next generation matrix method. The two expressions composed of a combination of two terms related to human to human and environment to human transmissions. The value of R0 has been calculated using estimated parameters corresponding to two datasets. Sensitivity analysis of the reproduction number to the corresponding model parameters has been carried out. Existence and stability analysis of disease free and endemic equilibrium points have been presented in relation with the obtained expressions of R0. Numerical simulations to demonstrate the effect of some model parameters related to environmental transmission on the disease transmission dynamics have been carried out and the results have been demonstrated graphically.


2021 ◽  
pp. 639-657
Author(s):  
Ekhlas Abd Al-Husain Jabr ◽  
Dahlia Khaled Bahlool

This paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of attractors that is a stable point, while periodic dynamics do not exist even on the boundary planes.


Sign in / Sign up

Export Citation Format

Share Document