scholarly journals A BP Neural Network Based on GA for Optimizing Energy Consumption of Copper Electrowinning

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jing Wu ◽  
Yanming Cheng ◽  
Cheng Liu ◽  
Ilkyoo Lee ◽  
Wenlin Huang

In this paper, achieving minimum energy consumption in the copper electrowinning process is taken as the research objective. In the traditional production process, sulfate ion concentration, copper ion concentration, and current density are carried out according to the empirical value, which cannot ensure the energy consumption reaching the optimal level. Therefore, this paper proposes a BP neural network model to optimize energy consumption according to the relationship between current density, sulfate ion concentration, copper ion concentration, electrolytic tank voltage, and current efficiency, and the established BP neural network model is trained by using real data from the enterprise. The simulation results show that there is a definite error between the predicted electrolytic tank voltage and current efficiency and corresponding to predict electrolytic tank voltage and current efficiency measured at the production site. The BP neural network improved by GA is proposed to further improve the prediction accuracy of the BP neural network. Simulation results indicate that the prediction error of electrolytic tank voltage and current efficiency is greatly reduced that meets the accuracy requirements, and then the minimum energy consumption can be calculated. On the premise of guaranteeing the quality of copper electrowinning, the current density, sulfate ion concentration, and copper ion concentration corresponding to the minimum energy consumption accurately predicted by this method can be respectively adjusted in real time, which realizes the optimization of energy consumption in the process of copper electrowinning under the background of low carbon and environmental protection.

2021 ◽  
Vol 16 (3) ◽  
pp. 1297-1304
Author(s):  
Jing Wu ◽  
Yan-Ming Cheng ◽  
Cheng Liu ◽  
Il-Kyoo Lee ◽  
Jae-Sang Cha ◽  
...  

Author(s):  
Hadi Abbas ◽  
Youngki Kim ◽  
Jason B. Siegel ◽  
Denise M. Rizzo

This paper presents a study of energy-efficient operation of vehicles with electrified powertrains leveraging route information, such as road grades, to adjust the speed trajectory. First, Pontryagin’s Maximum Principle (PMP) is applied to derive necessary conditions and to determine the possible operating modes. The analysis shows that only 5 modes are required to achieve minimum energy consumption; full propulsion, cruising, coasting, full regeneration, and full regeneration with conventional braking. The minimum energy consumption problem is reformulated and solved in the distance domain using Dynamic Programming to optimize speed profiles. A case study is shown for a light weight military robot including road grades. For this system, a tradeoff between energy consumption and trip time was found. The optimal cycle uses 20% less energy for the same trip duration, or could reduce the travel time by 14% with the same energy consumption compared to the baseline operation.


2021 ◽  
Vol 13 (23) ◽  
pp. 13016
Author(s):  
Rami Naimi ◽  
Maroua Nouiri ◽  
Olivier Cardin

The flexible job shop problem (FJSP) has been studied in recent decades due to its dynamic and uncertain nature. Responding to a system’s perturbation in an intelligent way and with minimum energy consumption variation is an important matter. Fortunately, thanks to the development of artificial intelligence and machine learning, a lot of researchers are using these new techniques to solve the rescheduling problem in a flexible job shop. Reinforcement learning, which is a popular approach in artificial intelligence, is often used in rescheduling. This article presents a Q-learning rescheduling approach to the flexible job shop problem combining energy and productivity objectives in a context of machine failure. First, a genetic algorithm was adopted to generate the initial predictive schedule, and then rescheduling strategies were developed to handle machine failures. As the system should be capable of reacting quickly to unexpected events, a multi-objective Q-learning algorithm is proposed and trained to select the optimal rescheduling methods that minimize the makespan and the energy consumption variation at the same time. This approach was conducted on benchmark instances to evaluate its performance.


Sign in / Sign up

Export Citation Format

Share Document