scholarly journals Motion Deblurring in Image Color Enhancement by WGAN

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jiangfan Feng ◽  
Shuang Qi

Motion deblurring and image enhancement are active research areas over the years. Although the CNN-based model has an advanced state of the art in motion deblurring and image enhancement, it fails to produce multitask results when challenged with the images of challenging illumination conditions. The key idea of this paper is to introduce a novel multitask learning algorithm for image motion deblurring and color enhancement, which enables us to enhance the color effect of an image while eliminating motion blur. To achieve this, we explore the synchronization of processing two tasks for the first time by using the framework of generative adversarial networks (GANs). We add L1 loss to the generator loss to simulate the model to match the target image at the pixel level. To make the generated image closer to the target image at the visual level, we also integrate perceptual style loss into generator loss. After a lot of experiments, we get an effective configuration scheme. The best model trained for about one week has achieved state-of-the-art performance in both deblurring and enhancement. Also, its image processing speed is approximately 1.75 times faster than the best competitor.

2020 ◽  
Vol 10 (18) ◽  
pp. 6245
Author(s):  
Quang Nhat Tran ◽  
Shih-Hsuan Yang

Frame interpolation, which generates an intermediate frame given adjacent ones, finds various applications such as frame rate up-conversion, video compression, and video streaming. Instead of using complex network models and additional data involved in the state-of-the-art frame interpolation methods, this paper proposes an approach based on an end-to-end generative adversarial network. A combined loss function is employed, which jointly considers the adversarial loss (difference between data models), reconstruction loss, and motion blur degradation. The objective image quality metric values reach a PSNR of 29.22 dB and SSIM of 0.835 on the UCF101 dataset, similar to those of the state-of-the-art approach. The good visual quality is notably achieved by approximately one-fifth computational time, which entails possible real-time frame rate up-conversion. The interpolated output can be further improved by a GAN based refinement network that better maintains motion and color by image-to-image translation.


2020 ◽  
Vol 34 (07) ◽  
pp. 11296-11303 ◽  
Author(s):  
Satoshi Kosugi ◽  
Toshihiko Yamasaki

This paper tackles unpaired image enhancement, a task of learning a mapping function which transforms input images into enhanced images in the absence of input-output image pairs. Our method is based on generative adversarial networks (GANs), but instead of simply generating images with a neural network, we enhance images utilizing image editing software such as Adobe® Photoshop® for the following three benefits: enhanced images have no artifacts, the same enhancement can be applied to larger images, and the enhancement is interpretable. To incorporate image editing software into a GAN, we propose a reinforcement learning framework where the generator works as the agent that selects the software's parameters and is rewarded when it fools the discriminator. Our framework can use high-quality non-differentiable filters present in image editing software, which enables image enhancement with high performance. We apply the proposed method to two unpaired image enhancement tasks: photo enhancement and face beautification. Our experimental results demonstrate that the proposed method achieves better performance, compared to the performances of the state-of-the-art methods based on unpaired learning.


2021 ◽  
Vol 14 (1) ◽  
pp. 87
Author(s):  
Yeping Peng ◽  
Zhen Tang ◽  
Genping Zhao ◽  
Guangzhong Cao ◽  
Chao Wu

Unmanned air vehicle (UAV) based imaging has been an attractive technology to be used for wind turbine blades (WTBs) monitoring. In such applications, image motion blur is a challenging problem which means that motion deblurring is of great significance in the monitoring of running WTBs. However, an embarrassing fact for these applications is the lack of sufficient WTB images, which should include better pairs of sharp images and blurred images captured under the same conditions for network model training. To overcome the challenge of image pair acquisition, a training sample synthesis method is proposed. Sharp images of static WTBs were first captured, and then video sequences were prepared by running WTBs at different speeds. The blurred images were identified from the video sequences and matched to the sharp images using image difference. To expand the sample dataset, rotational motion blurs were simulated on different WTBs. Synthetic image pairs were then produced by fusing sharp images and images of simulated blurs. Finally, a total of 4000 image pairs were obtained. To conduct motion deblurring, a hybrid deblurring network integrated with DeblurGAN and DeblurGANv2 was deployed. The results show that the integration of DeblurGANv2 and Inception-ResNet-v2 provides better deblurred images, in terms of both metrics of signal-to-noise ratio (80.138) and structural similarity (0.950) than those obtained from the comparable networks of DeblurGAN and MobileNet-DeblurGANv2.


Author(s):  
Lingyu Yan ◽  
Jiarun Fu ◽  
Chunzhi Wang ◽  
Zhiwei Ye ◽  
Hongwei Chen ◽  
...  

AbstractWith the development of image recognition technology, face, body shape, and other factors have been widely used as identification labels, which provide a lot of convenience for our daily life. However, image recognition has much higher requirements for image conditions than traditional identification methods like a password. Therefore, image enhancement plays an important role in the process of image analysis for images with noise, among which the image of low-light is the top priority of our research. In this paper, a low-light image enhancement method based on the enhanced network module optimized Generative Adversarial Networks(GAN) is proposed. The proposed method first applied the enhancement network to input the image into the generator to generate a similar image in the new space, Then constructed a loss function and minimized it to train the discriminator, which is used to compare the image generated by the generator with the real image. We implemented the proposed method on two image datasets (DPED, LOL), and compared it with both the traditional image enhancement method and the deep learning approach. Experiments showed that our proposed network enhanced images have higher PNSR and SSIM, the overall perception of relatively good quality, demonstrating the effectiveness of the method in the aspect of low illumination image enhancement.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-28
Author(s):  
Xueyan Liu ◽  
Bo Yang ◽  
Hechang Chen ◽  
Katarzyna Musial ◽  
Hongxu Chen ◽  
...  

Stochastic blockmodel (SBM) is a widely used statistical network representation model, with good interpretability, expressiveness, generalization, and flexibility, which has become prevalent and important in the field of network science over the last years. However, learning an optimal SBM for a given network is an NP-hard problem. This results in significant limitations when it comes to applications of SBMs in large-scale networks, because of the significant computational overhead of existing SBM models, as well as their learning methods. Reducing the cost of SBM learning and making it scalable for handling large-scale networks, while maintaining the good theoretical properties of SBM, remains an unresolved problem. In this work, we address this challenging task from a novel perspective of model redefinition. We propose a novel redefined SBM with Poisson distribution and its block-wise learning algorithm that can efficiently analyse large-scale networks. Extensive validation conducted on both artificial and real-world data shows that our proposed method significantly outperforms the state-of-the-art methods in terms of a reasonable trade-off between accuracy and scalability. 1


2021 ◽  
Vol 14 (11) ◽  
pp. 2445-2458
Author(s):  
Valerio Cetorelli ◽  
Paolo Atzeni ◽  
Valter Crescenzi ◽  
Franco Milicchio

We introduce landmark grammars , a new family of context-free grammars aimed at describing the HTML source code of pages published by large and templated websites and therefore at effectively tackling Web data extraction problems. Indeed, they address the inherent ambiguity of HTML, one of the main challenges of Web data extraction, which, despite over twenty years of research, has been largely neglected by the approaches presented in literature. We then formalize the Smallest Extraction Problem (SEP), an optimization problem for finding the grammar of a family that best describes a set of pages and contextually extract their data. Finally, we present an unsupervised learning algorithm to induce a landmark grammar from a set of pages sharing a common HTML template, and we present an automatic Web data extraction system. The experiments on consolidated benchmarks show that the approach can substantially contribute to improve the state-of-the-art.


Sign in / Sign up

Export Citation Format

Share Document