scholarly journals Reinforcement Learning-Based Genetic Algorithm in Optimizing Multidimensional Data Discretization Scheme

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qiong Chen ◽  
Mengxing Huang ◽  
Qiannan Xu ◽  
Hao Wang ◽  
Jinghui Wang

Feature discretization can reduce the complexity of data and improve the efficiency of data mining and machine learning. However, in the process of multidimensional data discretization, limited by the complex correlation among features and the performance bottleneck of traditional discretization criteria, the schemes obtained by most algorithms are not optimal in specific application scenarios and can even fail to meet the accuracy requirements of the system. Although some swarm intelligence algorithms can achieve better results, it is difficult to formulate appropriate strategies without prior knowledge, which will make the search in multidimensional space inefficient, consume many computing resources, and easily fall into local optima. To solve these problems, this paper proposes a genetic algorithm based on reinforcement learning to optimize the discretization scheme of multidimensional data. We use rough sets to construct the individual fitness function, and we design the control function to dynamically adjust population diversity. In addition, we introduce a reinforcement learning mechanism to crossover and mutation to determine the crossover fragments and mutation points of the discretization scheme to be optimized. We conduct simulation experiments on Landsat 8 and Gaofen-2 images, and we compare our method to the traditional genetic algorithm and state-of-the-art discretization methods. Experimental results show that the proposed optimization method can further reduce the number of intervals and simplify the multidimensional dataset without decreasing the data consistency and classification accuracy of discretization.

2012 ◽  
Vol 542-543 ◽  
pp. 1007-1010
Author(s):  
Jia Xi Du ◽  
Hong Shen ◽  
Yuexia Feng

Based on PID controller, the closed-loop model of instantaneous torque for automotive brake test-bench was established, and then the instantaneous torque and the deviation function were calculated, furthermore, the genetic algorithm was adopted in order to get a global optimal solution and to optimize the parameters of the PID control system. So that the deviation function can be reduced or improved. By comparing the effect of control function, the causes for error volatility of the PID control system were derived, and the fitness function of genetic algorithm was determined reasonably. This algorithm can improve the reliability and accuracy of the control model effectively, and provide an effective method for testing the merits and integrated performance of automotive brake design.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Zhanke Yu ◽  
Mingfang Ni ◽  
Zeyan Wang ◽  
Yanhua Zhang

This paper presents an improved genetic algorithm (IGA) for dynamic route guidance algorithm. The proposed IGA design a vicinity crossover technique and a greedy backward mutation technique to increase the population diversity and strengthen local search ability. The steady-state reproduction is introduced to protect the optimized genetic individuals. Furthermore the junction delay is introduced to the fitness function. The simulation results show the effectiveness of the proposed algorithm.


2014 ◽  
Vol 631-632 ◽  
pp. 66-69
Author(s):  
Bai Lin Wang ◽  
Tie Ke Li ◽  
Hai Feng Wang ◽  
Can Tao Shi

A permutation flowshop scheduling problem with maximum waiting time constraints to minimize makespan is studied, and a partheno-genetic algorithm (PGA) is presented. In PGA, the fitness function is defined as a decreasing function of makespan to enhance the selected opportunity of good individuals; the roulette algorithm for chromosome selection is improved to keep population diversity with high quality by three strategies: optimal maintenance, fitness adjustment and roulette reconstruction; single-point gene exchange operators are applied to generate offspring. Numerical results demonstrated the feasibility and effectiveness of the algorithm.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
Jai Hoon Park ◽  
Kang Hoon Lee

Designing novel robots that can cope with a specific task is a challenging problem because of the enormous design space that involves both morphological structures and control mechanisms. To this end, we present a computational method for automating the design of modular robots. Our method employs a genetic algorithm to evolve robotic structures as an outer optimization, and it applies a reinforcement learning algorithm to each candidate structure to train its behavior and evaluate its potential learning ability as an inner optimization. The size of the design space is reduced significantly by evolving only the robotic structure and by performing behavioral optimization using a separate training algorithm compared to that when both the structure and behavior are evolved simultaneously. Mutual dependence between evolution and learning is achieved by regarding the mean cumulative rewards of a candidate structure in the reinforcement learning as its fitness in the genetic algorithm. Therefore, our method searches for prospective robotic structures that can potentially lead to near-optimal behaviors if trained sufficiently. We demonstrate the usefulness of our method through several effective design results that were automatically generated in the process of experimenting with actual modular robotics kit.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 115
Author(s):  
Andriy Chaban ◽  
Marek Lis ◽  
Andrzej Szafraniec ◽  
Radoslaw Jedynak

Genetic algorithms are used to parameter identification of the model of oscillatory processes in complicated motion transmission of electric drives containing long elastic shafts as systems of distributed mechanical parameters. Shaft equations are generated on the basis of a modified Hamilton–Ostrogradski principle, which serves as the foundation to analyse the lumped parameter system and distributed parameter system. They serve to compute basic functions of analytical mechanics of velocity continuum and rotational angles of shaft elements. It is demonstrated that the application of the distributed parameter method to multi-mass rotational systems, that contain long elastic elements and complicated control systems, is not always possible. The genetic algorithm is applied to determine the coefficients of approximation the system of Rotational Transmission with Elastic Shaft by equivalent differential equations. The fitness function is determined as least-square error. The obtained results confirm that application of the genetic algorithms allow one to replace the use of a complicated distributed parameter model of mechanical system by a considerably simpler model, and to eliminate sophisticated calculation procedures and identification of boundary conditions for wave motion equations of long elastic elements.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1581
Author(s):  
Alfonso Hernández ◽  
Aitor Muñoyerro ◽  
Mónica Urízar ◽  
Enrique Amezua

In this paper, an optimization procedure for path generation synthesis of the slider-crank mechanism will be presented. The proposed approach is based on a hybrid strategy, mixing local and global optimization techniques. Regarding the local optimization scheme, based on the null gradient condition, a novel methodology to solve the resulting non-linear equations is developed. The solving procedure consists of decoupling two subsystems of equations which can be solved separately and following an iterative process. In relation to the global technique, a multi-start method based on a genetic algorithm is implemented. The fitness function incorporated in the genetic algorithm will take as arguments the set of dimensional parameters of the slider-crank mechanism. Several illustrative examples will prove the validity of the proposed optimization methodology, in some cases achieving an even better result compared to mechanisms with a higher number of dimensional parameters, such as the four-bar mechanism or the Watt’s mechanism.


2010 ◽  
Vol 19 (01) ◽  
pp. 107-121 ◽  
Author(s):  
JUAN CARLOS FIGUEROA GARCÍA ◽  
DUSKO KALENATIC ◽  
CESAR AMILCAR LÓPEZ BELLO

This paper presents a proposal based on an evolutionary algorithm for imputing missing observations in time series. A genetic algorithm based on the minimization of an error function derived from their autocorrelation function, mean, and variance is presented. All methodological aspects of the genetic structure are presented. An extended description of the design of the fitness function is provided. Four application examples are provided and solved by using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document