scholarly journals Prognostic Value of an m6A RNA Methylation Regulator-Based Signature in Patients with Hepatocellular Carcinoma

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaomin Wu ◽  
Xiaojing Zhang ◽  
Leilei Tao ◽  
Xichao Dai ◽  
Ping Chen

Purposes. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Recent researches have demonstrated that m6A methylation regulators play a key role in various cancers, such as gastric cancer and colon adenocarcinoma. Several m6A methylation regulators are reported to predict the prognosis of HCC. Therefore, there is a need to further identify the predictive value of m6A methylation regulators in HCC. Methods. We utilized The Cancer Genome Atlas (TCGA) database to obtain the gene expression profile of m6A RNA methylation regulators and clinical information for patients with HCC. Besides, we identified two clusters of HCC with various clinical factors by consensus clustering analysis. Then the least absolute shrinkage and selection operator (LASSO) and the Cox regression analysis were applied to construct a prognostic signature. Results. Except for ZC3H13 and METTL14, a majority of the thirteen m6A RNA methylation regulators were significantly overexpressed in HCC specimens. HCC patients were classified into two groups (cluster 1 and cluster 2). The cluster 1 was with a significantly worse prognosis than cluster 2, and most of the 13 known m6A RNA methylation regulators were upregulated in cluster 1. Besides, we developed a prognostic signature consisting of YTHDF2, YTHDF1, METTL3, KIAA1429, and ZC3H13, which could successfully differentiate high-risk patients. More importantly, univariate and multivariate Cox regression analysis indicated that the signature-based risk score was an independent prognostic factor for patients with HCC. Conclusions. Our study showed these five m6A RNA methylation regulators can be used as practical and reliable prognostic tools of HCC, which might have potential value for therapeutic strategies.


2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS. Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients.Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.



2020 ◽  
Author(s):  
Ze-bing Song ◽  
Guo-pei Zhang ◽  
shaoqiang li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumor in the world which prognosis is poor. Therefore, a precise biomarker is needed to guide treatment and improve prognosis. More and more studies have shown that lncRNAs and immune response are closely related to the prognosis of hepatocellular carcinoma. The aim of this study was to establish a prognostic signature based on immune related lncRNAs for HCC.Methods: Univariate cox regression analysis was performed to identify immune related lncRNAs, which had negative correlation with overall survival (OS) of 370 HCC patients from The Cancer Genome Atlas (TCGA). A prognostic signature based on OS related lncRNAs was identified by using multivariate cox regression analysis. Gene set enrichment analysis (GSEA) and a competing endogenous RNA (ceRNA) network were performed to clarify the potential mechanism of lncRNAs included in prognostic signature. Results: A prognostic signature based on OS related lncRNAs (AC145207.5, AL365203.2, AC009779.2, ZFPM2-AS1, PCAT6, LINC00942) showed moderately in prognosis prediction, and related with pathologic stage (Stage I&II VS Stage III&IV), distant metastasis status (M0 VS M1) and tumor stage (T1-2 VS T3-4). CeRNA network constructed 15 aixs among differentially expressed immune related genes, lncRNAs included in prognostic signature and differentially expressed miRNA. GSEA indicated that these lncRNAs were involved in cancer-related pathways. Conclusion: We constructed a prognostic signature based on immune related lncRNAs which can predict prognosis and guide therapies for HCC.



2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS.Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients. Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.



2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS. Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients. Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.



BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yajuan Du ◽  
Ying Gao

Abstract Background There is growing evidence that pseudogenes may serve as prognostic biomarkers in several cancers. The present study was designed to develop and validate an accurate and robust pseudogene pairs-based signature for the prognosis of hepatocellular carcinoma (HCC). Methods RNA-sequencing data from 374 HCC patients with clinical follow-up information were obtained from the Cancer Genome Atlas (TCGA) database and used in this study. Survival-related pseudogene pairs were identified, and a signature model was constructed by Cox regression analysis (univariate and least absolute shrinkage and selection operator). All individuals were classified into high- and low-risk groups based on the optimal cutoff. Subgroups analysis of the novel signature was conducted and validated in an independent cohort. Pearson correlation analyses were carried out between the included pseudogenes and the protein-coding genes based on their expression levels. Enrichment analysis was performed to predict the possible role of the pseudogenes identified in the signature. Results A 19-pseudogene pair signature, which included 21 pseudogenes, was established. Patients in high-risk group demonstrated an increased the risk of adverse prognosis in the TCGA cohort and the external cohort (all P < 0.001). The novel pseudogene signature was independent of other conventional clinical variables used for survival prediction in HCC patients in the two cohorts revealed by the multivariate Cox regression analysis (all P < 0.001). Subgroup analysis further demonstrated the diagnostic value of the signature across different stages, grades, sexes, and age groups. The C-index of the prognostic signature was 0.761, which was not only higher than that of several previous risk models but was also much higher than that of a single age, sex, grade, and stage risk model. Furthermore, functional analysis revealed that the potential biological mechanisms mediated by these pseudogenes are primarily involved in cytokine receptor activity, T cell receptor signaling, chemokine signaling, NF-κB signaling, PD-L1 expression, and the PD-1 checkpoint pathway in cancer. Conclusion The novel proposed and validated pseudogene pair-based signature may serve as a valuable independent prognostic predictor for predicting survival of patients with HCC.



2020 ◽  
Author(s):  
Ran Wei ◽  
Jichuan Quan ◽  
Shuofeng Li ◽  
Zhao Lu ◽  
Xu Guan ◽  
...  

Abstract Background: Cancer stem cells (CSCs), which are characterized by self-renewal and plasticity, are highly correlated with tumor metastasis and drug resistance. To fully understand the role of CSCs in colorectal cancer (CRC), we evaluated the stemness traits and prognostic value of stemness-related genes in CRC.Methods: In this study, the data from 616 CRC patients from The Cancer Genome Atlas (TCGA) were assessed and subtyped based on the mRNA expression-based stemness index (mRNAsi). The correlations of cancer stemness with the immune microenvironment, tumor mutational burden (TMB) and N6-methyladenosine (m6A) RNA methylation regulators were analyzed. Weighted gene co-expression network analysis (WGCNA) was performed to identify the crucial stemness-related genes and modules. Furthermore, a prognostic expression signature was constructed using Lasso-penalized Cox regression analysis. The signature was validated via multiplex immunofluorescence staining of tissue samples in an independent cohort of 48 CRC patients.Results: This study suggests that high mRNAsi scores are associated with poor overall survival in stage Ⅳ CRC patients. Moreover, the levels of TMB and m6A RNA methylation regulators were positively correlated with mRNAsi scores, and low mRNAsi scores were characterized by increased immune activity in CRC. The analysis identified 2 key modules and 34 key genes as prognosis-related candidate biomarkers. Finally, a 3-gene prognostic signature (PARPBP, KNSTRN and KIF2C) was explored together with specific clinical features to construct a nomogram, which was successfully validated in an external cohort. Conclusions: There is a unique correlation between CSCs and the prognosis of CRC patients, and the novel biomarkers related to cell stemness could accurately predict the clinical outcomes of these patients.



2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.



2020 ◽  
Author(s):  
Jin Chen ◽  
Ji He ◽  
Xiaolei Ma ◽  
Xia Guo

Abstract Background: RNA modification, such as methylation of N6 adenosine (m6A), plays a critical role in many biological processes. However, the role of m6A RNA modification in cervical cancer (CC) remains largely unknown. Methods: The present study systematically investigated the molecular signatures and clinical relevance of 20 m6A RNA methylation regulators (writers, erasers, readers) in CC. The mRNA expression and clinical significance of m6A-related genes were investigated using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) cervical cancer cohort. Mutations, copy number variation (CNV), differential expression, gene ontology analysis and the construction of a mRNA-microRNA regulatory network were performed to investigate the underlying mechanisms involved in the abnormal expression of m6A-related genes. Results: We found inclusive genetic information alterations among the m6A regulators and that their transcript expression levels were significantly associated with cancer hallmark-related pathways activity, such as the PI3K-AKT signaling pathway, microRNAs in cancer and the focal adhesion pathway, which were significantly enriched. Moreover, m6A regulators were found to be potentially useful for prognostic stratification and we identified FMR1 and ZC3H13 as potential prognostic risk oncogenes by LASSO regression. The ROC curves of 3, 5 and 10 years were 0.685, 0.726 and 0.741, respectively. The specificity for 3, 5 and 10 years were 0.598, 0.631 and 0.833, the sensitivity were 0.707, 0.752 and 0.811, respectively. Conclusions: Multivariable Cox regression analysis revealed that the risk score is an independent prognostic marker and can be used to predict the clinical and pathological features of CC.



2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Fei Li ◽  
Ping Zhang

Background. Pancreatic adenocarcinoma (PAAD) has become the major cause of cancer-related deaths globally. The m6A (N6-methyladenosine) alteration plays a crucial function in carcinogenesis and tumor progression. The role of genes related to m6A and their expression level in pancreatic cancer is not identified yet. The objective of this research analysis is a demonstration of the m6A RNA methylation regulators based as biomarkers for the PAAD diagnosis. Methods. About 23 extensively reported m6A RNA methylation regulators were identified through the Cancer Genome Atlas (TCGA) database. This identification was based on consensus clustering analysis, protein-protein integration (PPI) analysis, risk prognostic model, Cox-regression analysis, String Spearman analysis, and LASSO Cox-regression. Results. Herein, we conclude that 23 m6A methylation regulators have a strong link with the clinical and molecular characteristics of PAAD. The three subgroups (1/2) of pancreatic adenocarcinoma were identified using the clustering of 23 m6A regulators. Subgroup cluster 2 had a lower survival rate than the subgroup of cluster 1, and the difference in grades between the two groups was substantial. An assessment was performed using the 23 reported m6A methylation regulators. Eight of these can be used as independent PAAD prognostic markers. The consequences of variable IGF2BP3 expression in PAAD were then investigated further. Conclusions. The key finding of this study was that the m6A methylation regulator gene has the main role in pancreatic tumors, and it may be used as a biomarker in the prognosis of the PAAD and for therapy purposes.



2020 ◽  
Author(s):  
Zhuomao Mo ◽  
Shaoju Luo ◽  
Hao Hu ◽  
Ling Yu ◽  
Zhirui Cao ◽  
...  

Abstract Background Many different signatures and models have been established for patients with hepatocellular carcinoma (HCC), but no signature based on m6A related genes was developed. The objective of this research was to establish the signature with m6A related genes in HCC. Methods Data from 377 HCC patients from The Cancer Genome Atlas (TCGA) database was downloaded. The included m6A related genes were selected by Cox regression analysis and the signature was verified by survival analysis and multiple receiver operating characteristic (ROC) curve. Furthermore, the nomogram was constructed and evaluated by C-index, calibration plot and ROC curve. Results The signature was established with the four m6A related genes (YTHDF2, YTHDF1, METTL3 and KIAA1429). Under the grouping from signature, patients in high risk group of showed the poor prognosis than those in low risk group. And significant difference was found in two kinds of immune cells (T cell gamma delta and NK cells activated) between two groups. The univariate and multivariate Cox regression analysis indicated that m6A related signature can be the potential independent prognosis factor in HCC. Finally, we developed a clinical risk model predicting the HCC prognosis and successfully verified it in C-index, calibration and ROC curve. Conclusion Our study identified the m6A related signature for predicting prognosis of HCC and provided the potential biomarker between m6A and immune therapy.



Sign in / Sign up

Export Citation Format

Share Document