A novel signature based on m6A related genes as the potential prognostic factor in hepatocellular carcinoma.

2020 ◽  
Author(s):  
Zhuomao Mo ◽  
Shaoju Luo ◽  
Hao Hu ◽  
Ling Yu ◽  
Zhirui Cao ◽  
...  

Abstract Background Many different signatures and models have been established for patients with hepatocellular carcinoma (HCC), but no signature based on m6A related genes was developed. The objective of this research was to establish the signature with m6A related genes in HCC. Methods Data from 377 HCC patients from The Cancer Genome Atlas (TCGA) database was downloaded. The included m6A related genes were selected by Cox regression analysis and the signature was verified by survival analysis and multiple receiver operating characteristic (ROC) curve. Furthermore, the nomogram was constructed and evaluated by C-index, calibration plot and ROC curve. Results The signature was established with the four m6A related genes (YTHDF2, YTHDF1, METTL3 and KIAA1429). Under the grouping from signature, patients in high risk group of showed the poor prognosis than those in low risk group. And significant difference was found in two kinds of immune cells (T cell gamma delta and NK cells activated) between two groups. The univariate and multivariate Cox regression analysis indicated that m6A related signature can be the potential independent prognosis factor in HCC. Finally, we developed a clinical risk model predicting the HCC prognosis and successfully verified it in C-index, calibration and ROC curve. Conclusion Our study identified the m6A related signature for predicting prognosis of HCC and provided the potential biomarker between m6A and immune therapy.

2020 ◽  
Author(s):  
Zhuomao Mo ◽  
Shaoju Luo ◽  
Zhirui Cao ◽  
Hao Hu ◽  
Ling Yu ◽  
...  

Abstract Background mTORC1 signal pathway play a role in the initiation and progression of hepatocellular carcinoma (HCC), but no relevant gene signature was developed. This research aimed to explore the potential correlation between mTORC1 signal pathway and HCC and establish the related genes signature. Methods HCC cases were retrieved from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) databases. The genes to be included in mTORC1-assiociated signature were selected by performing univariate, multivariate Cox regression analysis and lasso regression analysis. Then, the signature was verified by survival analysis and multiple receiver operating characteristic (ROC) curve. Furthermore, a nomogram was established and evaluated by C-index, calibration plot and ROC curve. Results The signature was established with the six genes ( ETF1, GSR, SKAP2, HSPD1, CACYBP and PNP ). Under the grouping from signature, patients in the high- risk group showed worse survival than those in the low-risk group in both three datasets. The univariate and multivariate Cox regression analysis indicated that mTORC1 related signature can be the potential independent prognostic factor in HCC. Conclusion The mTORC1 associated gene signature established and validated in our research could be used as a potential prognostic factor in HCC.


Author(s):  
Philip J. Johnson ◽  
Sofi Dhanaraj ◽  
Sarah Berhane ◽  
Laura Bonnett ◽  
Yuk Ting Ma

Abstract Background The neutrophil–lymphocyte ratio (NLR), a presumed measure of the balance between neutrophil-associated pro-tumour inflammation and lymphocyte-dependent antitumour immune function, has been suggested as a prognostic factor for several cancers, including hepatocellular carcinoma (HCC). Methods In this study, a prospectively accrued cohort of 781 patients (493 HCC and 288 chronic liver disease (CLD) without HCC) were followed-up for more than 6 years. NLR levels between HCC and CLD patients were compared, and the effect of baseline NLR on overall survival amongst HCC patients was assessed via multivariable Cox regression analysis. Results On entry into the study (‘baseline’), there was no clinically significant difference in the NLR values between CLD and HCC patients. Amongst HCC patients, NLR levels closest to last visit/death were significantly higher compared to baseline. Multivariable Cox regression analysis showed that NLR was an independent prognostic factor, even after adjustment for the HCC stage. Conclusion NLR is a significant independent factor influencing survival in HCC patients, hence offering an additional dimension in prognostic models.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Rongjie Zhang ◽  
Yan Chen ◽  
Ge Zhou ◽  
Baoguo Sun ◽  
Yue Li ◽  
...  

Objectives. The purpose of this study was to identify the molecular mechanism and prognosis-related genes of Jianpi Jiedu decoction in the treatment of hepatocellular carcinoma. Methods. The gene expression data of hepatocellular carcinoma samples and normal tissue samples were downloaded from TCGA database, and the potential targets of drug composition of Jianpi Jiedu decoction were obtained from TCMSP database. The genes were screened out in order to obtain the expression of these target genes in patients with hepatocellular carcinoma. The differential expression of target genes was analyzed by R software, and the genes related to prognosis were screened by univariate Cox regression analysis. Then, the LASSO model was constructed for risk assessment and survival analysis between different risk groups. At the same time, independent prognostic analysis, GSEA analysis, and prognostic analysis of single gene in patients with hepatocellular carcinoma were performed. Results. 174 compounds of traditional Chinese medicine were screened by TCMSP database, corresponding to 122 potential targets. 39 upregulated genes and 9 downregulated genes were screened out. A total of 20 candidate prognostic related genes were screened out by univariate Cox analysis, of which 12 prognostic genes were involved in the construction of the LASSO regression model. There was a significant difference in survival time between the high-risk group and low-risk group ( p < 0.05 ). Among the genes related to prognosis, the expression levels of CCNB1, NQO1, NUF2, and CHEK1 were high in tumor tissues ( p < 0.05 ). Survival analysis showed that the high expression levels of these four genes were significantly correlated with poor prognosis of HCC ( p < 0.05 ). GSEA analysis showed that the main KEGG enrichment pathways were lysine degradation, folate carbon pool, citrate cycle, and transcription factors. Conclusions. In the study, we found that therapy target genes of Jianpi Jiedu decoction were mainly involved in metabolism and apoptosis in hepatocellular carcinoma, and there was a close relationship between the prognosis of hepatocellular carcinoma and the genes of CCNB1, NQO1, NUF2, and CHEK1.


2021 ◽  
Vol 20 ◽  
pp. 153303382110414
Author(s):  
Xiaoyong Li ◽  
Jiaqong Lin ◽  
Yuguo pan ◽  
Peng Cui ◽  
Jintang Xia

Background: Liver progenitor cells (LPCs) play significant roles in the development and progression of hepatocellular carcinoma (HCC). However, no studies on the value of LPC-related genes for evaluating HCC prognosis exist. We developed a gene signature of LPC-related genes for prognostication in HCC. Methods: To identify LPC-related genes, we analyzed mRNA expression arrays from a dataset (GSE57812 & GSE 37071) containing LPCs, mature hepatocytes, and embryonic stem cell samples. HCC RNA-Seq data from The Cancer Genome Atlas (TCGA) were used to explore the differentially expressed genes (DEGs) related to prognosis through DEG analysis and univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed to construct the LPC-related gene prognostic model in the TCGA training dataset. This model was validated in the TCGA testing set and an external dataset (International Cancer Genome Consortium [ICGC] dataset). Finally, we investigated the relationship between this prognostic model with tumor-node-metastasis stage, tumor grade, and vascular invasion of HCC. Results: Overall, 1770 genes were identified as LPC-related genes, of which 92 genes were identified as DEGs in HCC tissues compared with normal tissues. Furthermore, we randomly assigned patients from the TCGA dataset to the training and testing cohorts. Twenty-six DEGs correlated with overall survival (OS) in the univariate Cox regression analysis. Lasso and multivariate Cox regression analyses were performed in the TCGA training set, and a 3-gene signature was constructed to stratify patients into 2 risk groups: high-risk and low-risk. Patients in the high-risk group had significantly lower OS than those in the low-risk group. Receiver operating characteristic curve analysis confirmed the signature's predictive capacity. Moreover, the risk score was confirmed to be an independent predictor for patients with HCC. Conclusion: We demonstrated that the LPC-related gene signature can be used for prognostication in HCC. Thus, targeting LPCs may serve as a therapeutic alternative for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Honglan Guo ◽  
Qinqiao Fan

Background. We aimed to investigate the expression of the hyaluronan-mediated motility receptor (HMMR) gene in hepatocellular carcinoma (HCC) and nonneoplastic tissues and to investigate the diagnostic and prognostic value of HMMR. Method. With the reuse of the publicly available The Cancer Genome Atlas (TCGA) data, 374 HCC patients and 50 nonneoplastic tissues were used to investigate the diagnostic and prognostic values of HMMR genes by receiver operating characteristic (ROC) curve analysis and survival analysis. All patients were divided into low- and high-expression groups based on the median value of HMMR expression level. Univariate and multivariate Cox regression analysis were used to identify prognostic factors. Gene set enrichment analysis (GSEA) was performed to explore the potential mechanism of the HMMR genes involved in HCC. The diagnostic and prognostic values were further validated in an external cohort from the International Cancer Genome Consortium (ICGC). Results. HMMR mRNA expression was significantly elevated in HCC tissues compared with that in normal tissues from both TCGA and the ICGC cohorts (all P values <0.001). Increased HMMR expression was significantly associated with histologic grade, pathological stage, and survival status (all P values <0.05). The area under the ROC curve for HMMR expression in HCC and normal tissues was 0.969 (95% CI: 0.948–0.983) in the TCGA cohort and 0.956 (95% CI: 0.932–0.973) in the ICGC cohort. Patients with high HMMR expression had a poor prognosis than patients with low expression group in both cohorts (all P < 0.001 ). Univariate and multivariate analysis also showed that HMMR is an independent predictor factor associated with overall survival in both cohorts (all P values <0.001). GSEA showed that genes upregulated in the high-HMMR HCC subgroup were mainly significantly enriched in the cell cycle pathway, pathways in cancer, and P53 signaling pathway. Conclusion. HMMR is expressed at high levels in HCC. HMMR overexpression may be an unfavorable prognostic factor for HCC.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xiaoyu Deng ◽  
Qinghua Bi ◽  
Shihan Chen ◽  
Xianhua Chen ◽  
Shuhui Li ◽  
...  

Although great progresses have been made in the diagnosis and treatment of hepatocellular carcinoma (HCC), its prognostic marker remains controversial. In this current study, weighted correlation network analysis and Cox regression analysis showed significant prognostic value of five autophagy-related long non-coding RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and CYTOR) for HCC patients from data in The Cancer Genome Atlas. By using them, we constructed a five-AR-lncRNA prognostic signature, which accurately distinguished the high- and low-risk groups of HCC patients. All of the five AR lncRNAs were highly expressed in the high-risk group of HCC patients. This five-AR-lncRNA prognostic signature showed good area under the curve (AUC) value (AUC = 0.751) for the overall survival (OS) prediction in either all HCC patients or HCC patients stratified according to several clinical traits. A prognostic nomogram with this five-AR-lncRNA signature predicted the 3- and 5-year OS outcomes of HCC patients intuitively and accurately (concordance index = 0.745). By parallel comparison, this five-AR-lncRNA signature has better prognosis accuracy than the other three recently published signatures. Furthermore, we discovered the prediction ability of the signature on therapeutic outcomes of HCC patients, including chemotherapy and immunotherapeutic responses. Gene set enrichment analysis and gene mutation analysis revealed that dysregulated cell cycle pathway, purine metabolism, and TP53 mutation may play an important role in determining the OS outcomes of HCC patients in the high-risk group. Collectively, our study suggests a new five-AR-lncRNA prognostic signature for HCC patients.


2020 ◽  
Author(s):  
Xinxin Xia ◽  
Hui Liu ◽  
Yuejun Li

Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. The immune system plays vital roles in HCC initiation and progression. The present study aimed to construct an immune-gene related prognostic signature (IRPS) for predicting the prognosis of HCC patients. Methods: Gene expression data were retrieved from The Cancer Genome Atlas database. Univariate Cox regression analysis was carried out to identify differentially expressed genes that associated with overall survival. The IRPS was established via Lasso and multivariate Cox regression analysis. Both Cox regression analyses were conducted to determine the independent prognostic factors for HCC. Next, the association between the IRPS and clinical-related factors were evaluated. The prognostic values of the IRPS were further validated using the International Cancer Genome Consortium (ICGC) dataset. Gene set enrichment analyses (GSEA) were conducted to understand the biological mechanisms of the IRPS. Results: A total of 62 genes were identified to be candidate immune-related prognostic genes. Transcription factors-immunogenes network was generated to explore the interactions among these candidate genes. According to the results of Lasso and multivariate Cox regression analysis, we established an IRPS and confirmed its stability and reliability in ICGC dataset. The IRPS was significantly associated with advanced clinicopathological characteristics. Both Cox regression analyses revealed that the IRPS could be an independent risk factor influencing the prognosis of HCC patients. The relationships between the IRPS and infiltration immune cells demonstrated that the IRPS was associated with immune cell infiltration. GSEA identified significantly enriched pathways, which might assist in elucidating the biological mechanisms of the IRPS. Furthermore, a nomogram was constructed to estimate the survival probability of HCC patients.Conclusions: The IRPS was effective for predicting prognosis of HCC patients, which might serve as novel prognostic and therapeutic biomarkers for HCC.


2020 ◽  
Author(s):  
Rui Wang ◽  
Zian Feng ◽  
Jie Hu ◽  
Xiaodong He ◽  
Zuojun Shen

Abstract Background: N6-methyladenosine (m6A) RNA modification is the most abundant modification method in mRNA, and it plays an important role in the occurrence and development of many cancers. However, data on the role of m6A RNA methylation regulators in lung adenocarcinoma (LUAD) are still lacking. This paper mainly discusses the role of m6A RNA methylation regulators in LUAD, to identify novel prognostic biomarkers.Methods: The gene expression data of 19 m6A methylation regulator in LUAD patients and its relevant clinical parameters were extracted from The Cancer Genome Atlas (TCGA) database. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm were performed to construct a risk signature and evaluated its prognostic prediction efficiency by using the receiver operating characteristic (ROC) curve. The risk score of each patient was calculated according to the risk signature, and LUAD patients were divided into high-risk group and low-risk group. Kaplan-Meier survival analysis and Cox regression analysis were used to identify the independent prognostic significance of risk signature. Finally, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the differential signaling pathways and cellular processes between the two groups.Results: The expression of 15 m6A RNA methylation regulators in LUAD tissues was significantly different than that in normal tissues. YTHDF3, YTHDF2, KIAA1429, HNRNPA2B1, RBM15, METTL3, HNRNPC, YTHDF1, IGF2BP2, IGF2BP3, IGF2BP1 were significantly up-regulated in LUAD, and the expressions of FTO, ZC3H13, WTAP, and METL14 were significantly down-regulated. We selected IGF2BP1, HNRNPC, and HNRNPA2B1 to construct the risk signature. ROC curve indicated the area under the curve (AUC) was 0.659, which means the risk signature had a good prediction efficiency. The results of Kaplan-Meier survival analysis and Cox regression analysis showed that the risk score can be used as an independent prognostic factor for LUAD.Conclusions: The m6A RNA methylation regulators IGF2BP1, HNRNPC, and HNRNPA2B1 have a significant correlation with the clinicopathological characteristics of LUAD, which may be a promising prognostic feature and clinical treatment target.


2020 ◽  
Author(s):  
Zaoqu Liu ◽  
Dechao Jiao ◽  
Xueliang Zhou ◽  
Yuan Yao ◽  
Zhaonan Li ◽  
...  

Abstract Background: A growing amount of evidence has suggested immune-related genes (IRGs) play a key role in the development of hepatocellular carcinoma (HCC). However, there have been no investigations proposing a reliable prognostic signature in terms of tumor immunology. This study aimed to develop a robust signature based on IRGs in HCC.Methods: A total of 597 HCC patients were enrolled. The TCGA database was utilized for discovery, and the ICGC database was utilized for validation. Multiple algorithms (including univariate Cox, LASSO, and multivariate Cox regression) were performed to identify key prognostic IRGs and establish an immune-related risk signature. Bioinformatics analysis and R soft tools were utilized to annotate underlying biological functions. Results: A total of 1416 differentially expressed mRNAs (DEMs) were screened in the TCGA cohort, of which 90 were differentially expressed IRGs (DEIRGs). Using univariate Cox regression analysis, we identified 33 prognostically relevant DEIRGs. Using LASSO regression and multivariate Cox regression analysis, we extracted 8 optimal DEIRGs (APLN, CDK4, CXCL2, ESR1, IL1RN, PSMD2, SEMA3F, and SPP1) to construct a risk signature with the ability to distinguish cases as having a high or low risk of unfavorable prognosis in the TCGA cohort, and the signature was verified in the ICGC cohort. The signature was prognostically significant in all stratified cohorts and was deemed an independent prognostic factor for HCC. We also built a nomogram with good performance by combining the signature with clinicopathological factors to increase the accuracy of predicting HCC prognosis. By investigating the relationship of the risk score and 8 risk genes from our signature with clinical traits, we found that the aberrant expression of the immune-related risk genes is correlated with the development of HCC. Moreover, the high-risk group was higher than the low-risk group in terms of tumor mutation burden (TMB), immune cell infiltration, and the expression of immune checkpoints (PD-1, PD-L1, and CTLA-4), and functional enrichment analysis indicated the signature enriched an intensive immune phenotype.Conclusions: This study developed a robust immune-related risk signature and built a predictive nomogram that reliably predict overall survival in HCC, which may be helpful for clinical management and personalized immunotherapy decisions.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jian-Rong Sun ◽  
Chen-Fan Kong ◽  
Kun-Min Xiao ◽  
Jia-Lu Yang ◽  
Xiang-Ke Qu ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common types of malignancy and is associated with high mortality. Prior research suggests that long non-coding RNAs (lncRNAs) play a crucial role in the development of HCC. Therefore, it is necessary to identify lncRNA-associated therapeutic biomarkers to improve the accuracy of HCC prognosis. Transcriptomic data of HCC obtained from The Cancer Genome Atlas (TCGA) database were used in the present study. Differentially expressed RNAs (DERNAs), including 74 lncRNAs, 16 miRNAs, and 35 mRNAs, were identified using bioinformatics analysis. The DERNAs were subsequently used to reconstruct a competing endogenous RNA (ceRNA) network. A lncRNA signature was revealed using Cox regression analysis, including LINC00200, MIR137HG, LINC00462, AP002478.1, and HTR2A-AS1. Kaplan-Meier plot demonstrated that the lncRNA signature is highly accurate in discriminating high- and low-risk patients (P &lt; 0.05). The area under curve (AUC) value exceeded 0.7 in both training and validation cohort, suggesting a high prognostic potential of the signature. Furthermore, multivariate Cox regression analysis indicated that both the TNM stage and the lncRNA signature could serve as independent prognostic factors for HCC (P &lt; 0.05). Then, a nomogram comprising the TNM stage and the lncRNA signature was determined to raise the accuracy in predicting the survival of HCC patients. In the present study, we have introduced a ceRNA network that could contribute to provide a new insight into the identification of potential regulation mechanisms for the development of HCC. The five-lncRNA signature could serve as a reliable biosignature for HCC prognosis, while the nomogram possesses strong potential in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document